Evaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesar

El carbón es un mineral que en la actualidad representa una fuente de energía clave en la economía mundial. Durante décadas ha sido utilizado para la generación de electricidad, calefacción y como materia prima en la industria. La extracción de este mineral involucra la remoción de capas de tierra y...

Full description

Autores:
Miranda Guevara, Alvaro de Jesús
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
spa
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/14552
Acceso en línea:
https://hdl.handle.net/20.500.12442/14552
Palabra clave:
Nanopartículas
Carbón
Citotoxicidad
Genotoxicidad
Daño oxidativo
HAP
Metales
Muerte celular
Nanoparticles
Coal
Cytotoxicity
Genotoxicity
Oxidative damage
PAHs
Metals
Cell death
Rights
restrictedAccess
License
http://purl.org/coar/access_right/c_16ec
id USIMONBOL2_4af8759545437194057b194118532833
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/14552
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesar
title Evaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesar
spellingShingle Evaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesar
Nanopartículas
Carbón
Citotoxicidad
Genotoxicidad
Daño oxidativo
HAP
Metales
Muerte celular
Nanoparticles
Coal
Cytotoxicity
Genotoxicity
Oxidative damage
PAHs
Metals
Cell death
title_short Evaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesar
title_full Evaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesar
title_fullStr Evaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesar
title_full_unstemmed Evaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesar
title_sort Evaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesar
dc.creator.fl_str_mv Miranda Guevara, Alvaro de Jesús
dc.contributor.advisor.none.fl_str_mv León Mejía, Grethel
Acosta Hoyos, Antonio José
dc.contributor.author.none.fl_str_mv Miranda Guevara, Alvaro de Jesús
dc.subject.spa.fl_str_mv Nanopartículas
Carbón
Citotoxicidad
Genotoxicidad
Daño oxidativo
HAP
Metales
Muerte celular
topic Nanopartículas
Carbón
Citotoxicidad
Genotoxicidad
Daño oxidativo
HAP
Metales
Muerte celular
Nanoparticles
Coal
Cytotoxicity
Genotoxicity
Oxidative damage
PAHs
Metals
Cell death
dc.subject.eng.fl_str_mv Nanoparticles
Coal
Cytotoxicity
Genotoxicity
Oxidative damage
PAHs
Metals
Cell death
description El carbón es un mineral que en la actualidad representa una fuente de energía clave en la economía mundial. Durante décadas ha sido utilizado para la generación de electricidad, calefacción y como materia prima en la industria. La extracción de este mineral involucra la remoción de capas de tierra y roca para acceder a las capas de carbón debajo de la superficie, proceso que deja una huella ambiental significativa, y que ha desencadenado preocupaciones cruciales relacionadas con la salud, especialmente a través de la generación del polvo proveniente de las actividades de minería. En este sentido se considera que la composición de las partículas de carbón, el tamaño y forma, juegan un papel fundamental en las afecciones respiratorias de las poblaciones humanas. El objetivo principal de este estudio fue analizar los efectos citotóxicos y genotóxicos in vitro de nanopartículas de carbón en células V79 y HaCaT. Mediante el método de separación en medio ácido se aislaron las nanopartículas. Posteriormente estas nanopartículas fueron usadas para exponer células V79 y HaCaT a diferentes concentraciones. A través del ensayo con rezasurina y sulforodamina se determinaron los efectos de estas partículas en la viabilidad celular, y se seleccionaron las concentraciones 50, 150 y 300 μg/mL para realizar los ensayos de genotoxicidad, ensayo cometa y micronúcleos. La microscopía de fuerza atómica proporcionó una visión detallada de la topografía de las nanopartículas, destacando su propensión a la aglomeración. Mediante SEM-EDS se evidenció la forma y diversidad química de estas nanopartículas, constituidas principalmente por elementos como carbono (C), oxígeno (O), hierro (Fe), calcio (Ca) y mediante cromatografía de gases acoplada a espectrometría de masas (GC/MS), se determinaron los hidrocarburos aromáticos policíclicos (HAP) presentes en las nanopartículas como fluoranteno, naftaleno, antraceno, 7H-benzo[c]fluoreno, fenantreno, pireno, benzo[a]antraceno, criseno y algunos derivados alquílicos. La evaluación de la genotoxicidad mediante marcadores como el ensayo cometa, la formación de micronúcleos y la inmunomarcación empleando anticuerpos anti-Gamma H2AX, mostró un efecto dosis-respuesta evidenciando la capacidad de las nanopartículas de carbón para inducir inestabilidad genética y muerte celular. El uso de la técnica de temperatura melting y PCR en tiempo real permitió evidenciar una posible alteración en la estructura y estabilidad del ADN debido a la interacción físico-química de este con las nanopartículas de carbón. En conclusión, este estudio destaca la relación entre las características específicas de las nanopartículas de carbón para llegar a comprender el entendimiento de sus interacciones a nivel celular, molecular y sentar las bases para dilucidar los mecanismos relacionados con el desarrollo de diferentes enfermedades respiratorias.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-25T22:40:47Z
dc.date.available.none.fl_str_mv 2024-04-25T22:40:47Z
dc.date.issued.none.fl_str_mv 2024
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.spa.spa.fl_str_mv Tesis de doctorado
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/14552
url https://hdl.handle.net/20.500.12442/14552
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
eu_rights_str_mv restrictedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.spa.fl_str_mv Ediciones Universidad Simón Bolívar
Facultad de Ciencias Básicas y Biomédicas
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/62ae5c5f-abaa-4150-8ea7-7f5ae6fe4619/download
https://bonga.unisimon.edu.co/bitstreams/32928223-f2d5-452f-aa82-a3840581501b/download
https://bonga.unisimon.edu.co/bitstreams/e2fdc246-1a88-4f58-9e54-91f8304921a6/download
https://bonga.unisimon.edu.co/bitstreams/e76247be-cb64-4149-9dde-422715777680/download
https://bonga.unisimon.edu.co/bitstreams/3b065c09-a74f-4f37-9abc-7895df6249fb/download
https://bonga.unisimon.edu.co/bitstreams/f0ba74ad-1383-40e5-8aba-b143ef341e69/download
https://bonga.unisimon.edu.co/bitstreams/651cd429-0cbb-46f1-9888-b54b959a47a1/download
https://bonga.unisimon.edu.co/bitstreams/78511376-0cdc-45aa-8e4b-76bdc64a757c/download
https://bonga.unisimon.edu.co/bitstreams/4dcdce67-7c0a-4353-b1de-4ee92d854688/download
https://bonga.unisimon.edu.co/bitstreams/b789f4ef-d5ab-4ae6-ae71-0c3c9e3c6f66/download
https://bonga.unisimon.edu.co/bitstreams/5b1faee3-4b00-41b1-8e4f-9f7f42c78c62/download
bitstream.checksum.fl_str_mv 202fbf8a46e2b33de5cd27178a0f55ea
955d27d9fb677ec296735ece71c86dd9
bb9bdc0b3349e4284e09149f943790b4
d76947374953f57574aa3c8876558a63
7c1b71068a66bbc0d83c164033142ae2
d76947374953f57574aa3c8876558a63
7c1b71068a66bbc0d83c164033142ae2
d04e4b37b42f2e705e0bb51e316e47bd
ba4a50c8bf3b92a221b96c4b59de8351
d04e4b37b42f2e705e0bb51e316e47bd
ba4a50c8bf3b92a221b96c4b59de8351
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100518439288832
spelling León Mejía, GrethelAcosta Hoyos, Antonio JoséMiranda Guevara, Alvaro de Jesús0a020cac-0ef5-4e73-be75-d4485135ead9-12024-04-25T22:40:47Z2024-04-25T22:40:47Z2024https://hdl.handle.net/20.500.12442/14552El carbón es un mineral que en la actualidad representa una fuente de energía clave en la economía mundial. Durante décadas ha sido utilizado para la generación de electricidad, calefacción y como materia prima en la industria. La extracción de este mineral involucra la remoción de capas de tierra y roca para acceder a las capas de carbón debajo de la superficie, proceso que deja una huella ambiental significativa, y que ha desencadenado preocupaciones cruciales relacionadas con la salud, especialmente a través de la generación del polvo proveniente de las actividades de minería. En este sentido se considera que la composición de las partículas de carbón, el tamaño y forma, juegan un papel fundamental en las afecciones respiratorias de las poblaciones humanas. El objetivo principal de este estudio fue analizar los efectos citotóxicos y genotóxicos in vitro de nanopartículas de carbón en células V79 y HaCaT. Mediante el método de separación en medio ácido se aislaron las nanopartículas. Posteriormente estas nanopartículas fueron usadas para exponer células V79 y HaCaT a diferentes concentraciones. A través del ensayo con rezasurina y sulforodamina se determinaron los efectos de estas partículas en la viabilidad celular, y se seleccionaron las concentraciones 50, 150 y 300 μg/mL para realizar los ensayos de genotoxicidad, ensayo cometa y micronúcleos. La microscopía de fuerza atómica proporcionó una visión detallada de la topografía de las nanopartículas, destacando su propensión a la aglomeración. Mediante SEM-EDS se evidenció la forma y diversidad química de estas nanopartículas, constituidas principalmente por elementos como carbono (C), oxígeno (O), hierro (Fe), calcio (Ca) y mediante cromatografía de gases acoplada a espectrometría de masas (GC/MS), se determinaron los hidrocarburos aromáticos policíclicos (HAP) presentes en las nanopartículas como fluoranteno, naftaleno, antraceno, 7H-benzo[c]fluoreno, fenantreno, pireno, benzo[a]antraceno, criseno y algunos derivados alquílicos. La evaluación de la genotoxicidad mediante marcadores como el ensayo cometa, la formación de micronúcleos y la inmunomarcación empleando anticuerpos anti-Gamma H2AX, mostró un efecto dosis-respuesta evidenciando la capacidad de las nanopartículas de carbón para inducir inestabilidad genética y muerte celular. El uso de la técnica de temperatura melting y PCR en tiempo real permitió evidenciar una posible alteración en la estructura y estabilidad del ADN debido a la interacción físico-química de este con las nanopartículas de carbón. En conclusión, este estudio destaca la relación entre las características específicas de las nanopartículas de carbón para llegar a comprender el entendimiento de sus interacciones a nivel celular, molecular y sentar las bases para dilucidar los mecanismos relacionados con el desarrollo de diferentes enfermedades respiratorias.El coal is a mineral that currently represents a key energy source in the global economy. For decades, it has been used for electricity generation, heating, and as a raw material in industry. The extraction of this mineral involves the removal of layers of soil and rock to access the coal seams beneath the surface, a process that leaves a significant environmental footprint and has triggered crucial health concerns, especially through the generation of dust from mining activities. In this regard, it is considered that the composition, size, and shape of coal particles play a fundamental role in respiratory conditions in human populations. The main objective of this study was to analyze the in vitro cytotoxic and genotoxic effects of coal nanoparticles on V79 and HaCaT cells. Nanoparticles were isolated using the acid medium separation method. Subsequently, these nanoparticles were used to expose V79 and HaCaT cells to different concentrations. The effects of these particles on cell viability were determined through resazurin and sulforhodamine assays, and concentrations of 50, 150, and 300 μg/mL were selected for genotoxicity assays, comet assay, and micronuclei assay. Atomic force microscopy provided a detailed view of the topography of the nanoparticles, highlighting their tendency to agglomerate. SEM-EDS revealed the shape and chemical diversity of these nanoparticles, primarily composed of elements such as carbon (C), oxygen (O), iron (Fe), calcium (Ca), and through gas chromatography coupled with mass spectrometry (GC/MS), polycyclic aromatic hydrocarbons (PAHs) present in the nanoparticles were determined, such as fluoranthene, naphthalene, anthracene, 7Hbenzo[c]fluorene, phenanthrene, pyrene, benzo[a]anthracene, chrysene, and some alkyl derivatives. The evaluation of genotoxicity using markers such as the comet assay, micronucleus formation, and immunostaining employing antibodies against Gamma H2AX showed a dose-response effect, demonstrating the ability of coal nanoparticles to induce genetic instability and cell death. The use of melting temperature technique and real-time PCR allowed for the evidence of a possible alteration in the structure and stability of DNA due to the physicochemical interaction with coal nanoparticles. In conclusion, this study highlights the relationship between the specific characteristics of coal nanoparticles to understand their interactions at the cellular and molecular levels and lay the groundwork for elucidating mechanisms related to the development of various respiratory diseases.pdfspaEdiciones Universidad Simón BolívarFacultad de Ciencias Básicas y BiomédicasNanopartículasCarbónCitotoxicidadGenotoxicidadDaño oxidativoHAPMetalesMuerte celularNanoparticlesCoalCytotoxicityGenotoxicityOxidative damagePAHsMetalsCell deathEvaluación de la citotoxicidad y genotoxicidad en células V79 y HaCaT asociado a la exposición a nanopartículas de carbón de La Loma Cesarinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecinfo:eu-repo/semantics/doctoralThesisTesis de doctoradohttp://purl.org/coar/resource_type/c_db06Assemi, S., Pan, L., Wang, X., Akinseye, T., Miller, J.D., 2023. Size Distribution, Elemental Composition and Morphology of Nanoparticles Separated from Respirable Coal Mine Dust. Minerals 13, 97. https://doi.org/10.3390/min13010097Attota, R.K., Liu, E.C., 2016. Volume determination of irregularly-shaped quasi-spherical nanoparticles. Anal. Bioanal. Chem. 408, 7897–7903. https://doi.org/10.1007/s00216-016- 9909-xAugustine, R., Hasan, A., Primavera, R., Wilson, R.J., Thakor, A.S., Kevadiya, B.D., 2020. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 25, 101692. https://doi.org/10.1016/j.mtcomm.2020.101692Bagur, R., Hajnóczky, G., 2017. Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. Mol. Cell 66, 780–788. https://doi.org/10.1016/j.molcel.2017.05.028Bergin, I.L., Witzmann, F.A., 2013. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int. J. Biomed. Nanosci. Nanotechnol. 3, 163. https://doi.org/10.1504/IJBNN.2013.054515Bruinink, A., Wang, J., Wick, P., 2015. Effect of particle agglomeration in nanotoxicology. Arch. Toxicol. 89, 659–675. https://doi.org/10.1007/s00204-015-1460-6Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., Stark, W.J., 2006. In Vitro Cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and the Effect of Particle Solubility. Environ. Sci. Technol. 40, 4374–4381. https://doi.org/10.1021/es052069iÇelik, T.A., 2018. Introductory Chapter: Cytotoxicity, in: Çelik, T.A. (Ed.), Cytotoxicity. InTech. https://doi.org/10.5772/intechopen.77244Chang, X., Li, J., Niu, S., Xue, Y., Tang, M., 2021. Neurotoxicity of metal‐containing nanoparticles and implications in glial cells. J. Appl. Toxicol. 41, 65–81. https://doi.org/10.1002/jat.4037Chen, J., 2016. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 6, a026104. https://doi.org/10.1101/cshperspect.a026104Chen, Y., Fan, Y., Huang, Y., Liao, X., Xu, W., Zhang, T., 2024. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem. Ecotoxicol. Environ. Saf. 269, 115905. https://doi.org/10.1016/j.ecoenv.2023.115905Chen, Y.-H., Nguyen, D., Brindley, S., Ma, T., Xia, T., Brune, J., Brown, J.M., Tsai, C.S.-J., 2023. The dependence of particle size on cell toxicity for modern mining dust. Sci. Rep. 13, 5101. https://doi.org/10.1038/s41598-023-31215-5Cheng, C., Porter, A.E., Muller, K., Koziol, K., Skepper, J.N., Midgley, P., Welland, M., 2009. Imaging carbon nanoparticles and related cytotoxicity. J. Phys. Conf. Ser. 151, 012030. https://doi.org/10.1088/1742-6596/151/1/012030Da Silva Júnior, F., Tavella, R., Fernandes, C., Soares, M., De Almeida, K., Garcia, E., Da Silva Pinto, E., Baisch, A., 2018. Genotoxicity in Brazilian coal miners and its associated factors. Hum. Exp. Toxicol. 37, 891–900. https://doi.org/10.1177/0960327117745692De Fazio, A.F., Misatziou, D., Baker, Y.R., Muskens, O.L., Brown, T., Kanaras, A.G., 2021. Chemically modified nucleic acids and DNA intercalators as tools for nanoparticle assembly. Chem. Soc. Rev. 50, 13410–13440. https://doi.org/10.1039/D1CS00632KDe Stefano, D., Carnuccio, R., Maiuri, M.C., 2012. Nanomaterials Toxicity and Cell Death Modalities. J. Drug Deliv. 2012, 1–14. https://doi.org/10.1155/2012/167896Devasena, T., Iffath, B., Renjith Kumar, R., Muninathan, N., Baskaran, K., Srinivasan, T., John, S.T., 2022. Insights on the Dynamics and Toxicity of Nanoparticles in Environmental Matrices. Bioinorg. Chem. Appl. 2022, 1–21. https://doi.org/10.1155/2022/4348149Donaldson, K., 2004. Nanotoxicology. Occup. Environ. Med. 61, 727–728. https://doi.org/10.1136/oem.2004.013243Dong, X., Wu, Z., Li, X., Xiao, L., Yang, M., Li, Y., Duan, J., Sun, Z., 2020. The Size-dependent Cytotoxicity of Amorphous Silica Nanoparticles: A Systematic Review of in vitro Studies. Int. J. Nanomedicine Volume 15, 9089–9113. https://doi.org/10.2147/IJN.S276105Dwivedi, S., Saquib, Q., Al-Khedhairy, A.A., Ali, A.-Y.S., Musarrat, J., 2012. Characterization of coal fly ash nanoparticles and induced oxidative DNA damage in human peripheral blood mononuclear cells. Sci. Total Environ. 437, 331–338. https://doi.org/10.1016/j.scitotenv.2012.08.004Etale, A., Tavengwa, N.T., Pakade, V.E., 2018. Metal Adsorption by Coal Fly Ash: The Role of Nano-sized Materials, in: Akinyemi, S.A., Gitari, M.W. (Eds.), Coal Fly Ash Beneficiation - Treatment of Acid Mine Drainage with Coal Fly Ash. InTech. https://doi.org/10.5772/intechopen.69426Evans, S.J., Clift, M.J.D., Singh, N., De Oliveira Mallia, J., Burgum, M., Wills, J.W., Wilkinson, T.S., Jenkins, G.J.S., Doak, S.H., 2017. Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity. Mutagenesis 32, 233–241. https://doi.org/10.1093/mutage/gew054Fan, H., Sun, Q., Dukenbayev, K., Benassi, E., Manarbek, L., Nurkesh, A.A., Khamijan, M., Mu, C., Li, G., Razbekova, M., Chen, Z., Amin, A., Xie, Y., 2022. Carbon nanoparticles induce DNA repair and PARP inhibitor resistance associated with nanozyme activity in cancer cells. Cancer Nanotechnol. 13, 39. https://doi.org/10.1186/s12645-022-00144-9Fenech, M., Knasmueller, S., Bolognesi, C., Holland, N., Bonassi, S., Kirsch-Volders, M., 2020. Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat. Res. Mutat. Res. 786, 108342. https://doi.org/10.1016/j.mrrev.2020.108342Ferdous, Z., Nemmar, A., 2020. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 21, 2375. https://doi.org/10.3390/ijms21072375Fu, P.P., Xia, Q., Hwang, H.-M., Ray, P.C., Yu, H., 2014. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 22, 64–75. https://doi.org/10.1016/j.jfda.2014.01.005Géloën, A., Mussabek, G., Kharin, A., Serdiuk, T., Alekseev, S.A., Lysenko, V., 2021. Impact of Carbon Fluoroxide Nanoparticles on Cell Proliferation. Nanomaterials 11, 3168. https://doi.org/10.3390/nano11123168Goulaouic, S., Foucaud, L., Bennasroune, A., Laval-Gilly, P., Falla, J., 2008. Effect of Polycyclic Aromatic Hydrocarbons and Carbon Black Particles on Pro-Inflammatory Cytokine Secretion: Impact of PAH Coating Onto Particles. J. Immunotoxicol. 5, 337–345. https://doi.org/10.1080/15476910802371016Hendryx, M., Zullig, K.J., Luo, J., 2020. Impacts of Coal Use on Health. Annu. Rev. Public Health 41, 397–415. https://doi.org/10.1146/annurev-publhealth-040119-094104Hou, C.-C., Zhu, J.-Q., 2017. Nanoparticles and female reproductive system: how do nanoparticles affect oogenesis and embryonic development. Oncotarget 8, 109799–109817. https://doi.org/10.18632/oncotarget.19087Ihantola, T., Hirvonen, M.-R., Ihalainen, M., Hakkarainen, H., Sippula, O., Tissari, J., Bauer, S., Di Bucchianico, S., Rastak, N., Hartikainen, A., Leskinen, J., Yli-Pirilä, P., Martikainen, M.-V., Miettinen, M., Suhonen, H., Rönkkö, T.J., Kortelainen, M., Lamberg, H., Czech, H., Martens, P., Orasche, J., Michalke, B., Yildirim, A.Ö., Jokiniemi, J., Zimmermann, R., Jalava, P.I., 2022. Genotoxic and inflammatory effects of spruce and brown coal briquettes combustion aerosols on lung cells at the air-liquid interface. Sci. Total Environ. 806, 150489. https://doi.org/10.1016/j.scitotenv.2021.150489Ishibashi, Y., Oura, S., Umemura, K., 2017. Adsorption of DNA binding proteins to functionalized carbon nanotube surfaces with and without DNA wrapping. Eur. Biophys. J. 46, 541–547. https://doi.org/10.1007/s00249-017-1200-3Ivask, A., Voelcker, N.H., Seabrook, S.A., Hor, M., Kirby, J.K., Fenech, M., Davis, T.P., Ke, P.C., 2015. DNA Melting and Genotoxicity Induced by Silver Nanoparticles and Graphene. Chem. Res. Toxicol. 28, 1023–1035. https://doi.org/10.1021/acs.chemrestox.5b00052Jo, Y., Woo, J.S., Lee, A.R., Lee, S.-Y., Shin, Y., Lee, L.P., Cho, M.-L., Kang, T., 2022. Inner-Membrane-Bound Gold Nanoparticles as Efficient Electron Transfer Mediators for Enhanced Mitochondrial Electron Transport Chain Activity. Nano Lett. 22, 7927–7935. https://doi.org/10.1021/acs.nanolett.2c02957Kamaszewski, M., Kawalski, K., Wiechetek, W., Szudrowicz, H., Martynow, J., Adamek-Urbańska, D., Łosiewicz, B., Szczepański, A., Bujarski, P., Frankowska-Łukawska, J., Chwaściński, A., Aksakal, E., 2023. The Effect of Silver Nanoparticles on the Digestive System, Gonad Morphology, and Physiology of Butterfly Splitfin (Ameca splendens). Int. J. Mol. Sci. 24, 14598. https://doi.org/10.3390/ijms241914598Kanti, P., Sharma, K.V., Raja Sekhar, Y., 2022. Influence of particle size on thermal conductivity and dynamic viscosity of water‐based Indian coal fly ash nanofluid. Heat Transf. 51, 413–433. https://doi.org/10.1002/htj.22313Kari, S., Subramanian, K., Altomonte, I.A., Murugesan, A., Yli-Harja, O., Kandhavelu, M., 2022. Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis 27, 482–508. https://doi.org/10.1007/s10495-022-01735-yKharlamova, M.V., Kramberger, C., 2023. Cytotoxicity of Carbon Nanotubes, Graphene, Fullerenes, and Dots. Nanomaterials 13, 1458. https://doi.org/10.3390/nano13091458Khramtsov, P., Kropaneva, M., Kalashnikova, T., Bochkova, M., Timganova, V., Zamorina, S., Rayev, M., 2018. Highly Stable Conjugates of Carbon Nanoparticles with DNA Aptamers. Langmuir 34, 10321–10332. https://doi.org/10.1021/acs.langmuir.8b01255Krupina, K., Goginashvili, A., Cleveland, D.W., 2021. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 70, 91–99. https://doi.org/10.1016/j.ceb.2021.01.004Kumah, E.A., Fopa, R.D., Harati, S., Boadu, P., Zohoori, F.V., Pak, T., 2023. Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 23, 1059. https://doi.org/10.1186/s12889-023-15958-4Lee, Y., Wang, Q., Shuryak, I., Brenner, D.J., Turner, H.C., 2019. Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat. Oncol. 14, 150. https://doi.org/10.1186/s13014-019-1344-7Lei, X., Muscat, J.E., Zhang, B., Sha, X., Xiu, G., 2018. Differentially DNA methylation changes induced in vitro by traffic-derived nanoparticulate matter. Toxicology 395, 54–62. https://doi.org/10.1016/j.tox.2017.11.005León-Mejía, G., Rueda, R.A., Pérez Pérez, J., Miranda-Guevara, A., Moreno, O.F., Quintana-Sosa, M., Trindade, C., De Moya, Y.S., Ruiz-Benitez, M., Lemus, Y.B., Rodríguez, I.L., Oliveros-Ortiz, L., Acosta-Hoyos, A., Pacheco-Londoño, L.C., Muñoz, A., Hernández-Rivera, S.P., Olívero-Verbel, J., Da Silva, J., Henriques, J.A.P., 2023. Analysis of the cytotoxic and genotoxic effects in a population chronically exposed to coal mining residues. Environ. Sci. Pollut. Res. 30, 54095–54105. https://doi.org/10.1007/s11356-023-26136-9León-Mejía, G., Silva, L.F.O., Civeira, M.S., Oliveira, M.L.S., Machado, M., Villela, I.V., Hartmann, A., Premoli, S., Corrêa, D.S., Da Silva, J., Henriques, J.A.P., 2016. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ. Sci. Pollut. Res. 23, 24019–24031. https://doi.org/10.1007/s11356-016-7623-zLi, F., Cai, Q., Hao, X., Zhao, C., Huang, Z., Zheng, Y., Lin, X., Weng, S., 2019. Insight into the DNA adsorption on nitrogen-doped positive carbon dots. RSC Adv. 9, 12462–12469. https://doi.org/10.1039/C9RA00881KLim, H.K., Asharani, P.V., Hande, M.P., 2012. Enhanced Genotoxicity of Silver Nanoparticles in DNA Repair Deficient Mammalian Cells. Front. Genet. 3. https://doi.org/10.3389/fgene.2012.00104Liu, J., Liu, Z., Pang, Y., Zhou, H., 2022. The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. J. Nanobiotechnology 20, 127. https://doi.org/10.1186/s12951-022-01343-7Liu, Y., Hardie, J., Zhang, X., Rotello, V.M., 2017. Effects of engineered nanoparticles on the innate immune system. Semin. Immunol. 34, 25–32. https://doi.org/10.1016/j.smim.2017.09.011Lugrin, J., Rosenblatt-Velin, N., Parapanov, R., Liaudet, L., 2014. The role of oxidative stress during inflammatory processes. Biol. Chem. 395, 203–230. https://doi.org/10.1515/hsz-2013-0241Luzhna, L., Kathiria, P., Kovalchuk, O., 2013. Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front. Genet. 4. https://doi.org/10.3389/fgene.2013.00131Madannejad, R., Shoaie, N., Jahanpeyma, F., Darvishi, M.H., Azimzadeh, M., Javadi, H., 2019. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Biol. Interact. 307, 206–222. https://doi.org/10.1016/j.cbi.2019.04.036Mancuso, L., Cao, G., 2014. Acute toxicity test of CuO nanoparticles using human mesenchymal stem cells. Toxicol. Mech. Methods 24, 449–454. https://doi.org/10.3109/15376516.2014.928920Manke, A., Wang, L., Rojanasakul, Y., 2013. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Res. Int. 2013, 1–15. https://doi.org/10.1155/2013/942916Marano, F., Rodrigues-Lima, F., Dupret, J.-M., Baeza-Squiban, A., Boland, S., 2016. Cellular Mechanisms of Nanoparticle Toxicity, in: Bhushan, B. (Ed.), Encyclopedia of Nanotechnology. Springer Netherlands, Dordrecht, pp. 498–505. https://doi.org/10.1007/978-94-017-9780-1_175Matt, S., Hofmann, T.G., 2016. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell. Mol. Life Sci. 73, 2829–2850. https://doi.org/10.1007/s00018-016-2130-4Matzenbacher, C.A., Garcia, A.L.H., Dos Santos, M.S., Nicolau, C.C., Premoli, S., Corrêa, D.S., De Souza, C.T., Niekraszewicz, L., Dias, J.F., Delgado, T.V., Kalkreuth, W., Grivicich, I., Da Silva, J., 2017. DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro. J. Hazard. Mater. 324, 781–788. https://doi.org/10.1016/j.jhazmat.2016.11.062Miranda-Guevara, A., Muñoz-Acevedo, A., Fiorillo-Moreno, O., Acosta-Hoyos, A., Pacheco-Londoño, L., Quintana-Sosa, M., De Moya, Y., Dias, J., De Souza, G.S., Martinez-Lopez, W., Garcia, A.L.H., Da Silva, J., Borges, M.S., Henriques, J.A.P., León-Mejía, G., 2023. The dangerous link between coal dust exposure and DNA damage: unraveling the role of some of the chemical agents and oxidative stress. Environ. Geochem. Health 45, 7081–7097. https://doi.org/10.1007/s10653-023-01697-3Misra, S.K., Chang, H.-H., Mukherjee, P., Tiwari, S., Ohoka, A., Pan, D., 2015. Regulating Biocompatibility of Carbon Spheres via Defined Nanoscale Chemistry and a Careful Selection of Surface Functionalities. Sci. Rep. 5, 14986. https://doi.org/10.1038/srep14986Modrzynska, J., Berthing, T., Ravn-Haren, G., Jacobsen, N.R., Weydahl, I.K., Loeschner, K., Mortensen, A., Saber, A.T., Vogel, U., 2018. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice. Part. Fibre Toxicol. 15, 2. https://doi.org/10.1186/s12989-017-0238-9Muñoz, X., Barreiro, E., Bustamante, V., Lopez-Campos, J.L., González-Barcala, F.J., Cruz, M.J., 2019. Diesel exhausts particles: Their role in increasing the incidence of asthma. Reviewing the evidence of a causal link. Sci. Total Environ. 652, 1129–1138. https://doi.org/10.1016/j.scitotenv.2018.10.188Murugadoss, S., Brassinne, F., Sebaihi, N., Petry, J., Cokic, S.M., Van Landuyt, K.L., Godderis, L., Mast, J., Lison, D., Hoet, P.H., Van Den Brule, S., 2020. Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo. Part. Fibre Toxicol. 17, 10. https://doi.org/10.1186/s12989-020-00341-7Nakamura, T., Naguro, I., Ichijo, H., 2019. Iron homeostasis and iron-regulated ROS in cell death, senescence and human diseases. Biochim. Biophys. Acta BBA - Gen. Subj. 1863, 1398–1409. https://doi.org/10.1016/j.bbagen.2019.06.010Neckel, A., Oliveira, M.L.S., Castro Bolaño, L.J., Maculan, L.S., Moro, L.D., Bodah, E.T., Moreno-Ríos, A.L., Bodah, B.W., Silva, L.F.O., 2021. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 173, 112925. https://doi.org/10.1016/j.marpolbul.2021.112925Neckel, A., Pinto, D., Adelodun, B., Dotto, G.L., 2022. An Analysis of Nanoparticles Derived from Coal Fly Ash Incorporated into Concrete. Sustainability 14, 3943. https://doi.org/10.3390/su14073943Nii, D., Hayashida, T., Umemura, K., 2013. Controlling the adsorption and desorption of double-stranded DNA on functionalized carbon nanotube surface. Colloids Surf. B Biointerfaces 106, 234–239. https://doi.org/10.1016/j.colsurfb.2013.01.054Oliveira, M.L.S., Akinyemi, S.A., Nyakuma, B.B., Dotto, G.L., 2022. Environmental Impacts of Coal Nanoparticles from Rehabilitated Mine Areas in Colombia. Sustainability 14, 4544. https://doi.org/10.3390/su14084544Pujalté, I., Passagne, I., Brouillaud, B., Tréguer, M., Durand, E., Ohayon-Courtès, C., L’Azou, B., 2011. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part. Fibre Toxicol. 8, 10. https://doi.org/10.1186/1743-8977-8-10Rahmati, M., Mozafari, M., 2019. Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Front. Bioeng. Biotechnol. 7, 4. https://doi.org/10.3389/fbioe.2019.00004Redon, C.E., Nakamura, A.J., Martin, O.A., Parekh, P.R., Weyemi, U.S., Bonner, W.M., 2011. Recent developments in the use of γ -H2AX as a quantitative DNA double-strand break biomarker. Aging 3, 168–174. https://doi.org/10.18632/aging.100284Ribeiro, J., DaBoit, K., Flores, D., Kronbauer, M.A., Silva, L.F.O., 2013. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 452–453, 98–107. https://doi.org/10.1016/j.scitotenv.2013.02.010Roos, W.P., Thomas, A.D., Kaina, B., 2016. DNA damage and the balance between survival and death in cancer biology. Nat. Rev. Cancer 16, 20–33. https://doi.org/10.1038/nrc.2015.2Rouhani, A., Gusiatin, M.Z., Hejcman, M., 2023. An overview of the impacts of coal mining and processing on soil: assessment, monitoring, and challenges in the Czech Republic. Environ. Geochem. Health 45, 7459–7490. https://doi.org/10.1007/s10653-023-01700-xRozhina, E., Ishmukhametov, I., Nigamatzyanova, L., Akhatova, F., Batasheva, S., Taskaev, S., Montes, C., Lvov, Y., Fakhrullin, R., 2021. Comparative Toxicity of Fly Ash: An In Vitro Study. Molecules 26, 1926. https://doi.org/10.3390/molecules26071926Safaee, M.M., Gravely, M., Lamothe, A., McSweeney, M., Roxbury, D., 2019. Enhancing the Thermal Stability of Carbon Nanomaterials with DNA. Sci. Rep. 9, 11926. https://doi.org/10.1038/s41598-019-48449-xSaikia, B.K., Saikia, J., Rabha, S., Silva, L.F.O., Finkelman, R., 2018. Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 9, 863–875. https://doi.org/10.1016/j.gsf.2017.11.013Sambandam, B., Devasena, T., Islam, V.I.H., Prakhya, B.M., 2015. Characterization of coal fly ash nanoparticles and their induced in vitro cellular toxicity and oxidative DNA damage in different cell lines. Indian J. Exp. Biol. 53, 585–593.Samrot, A.V., Noel Richard Prakash, L.X., 2023. Nanoparticles Induced Oxidative Damage in Reproductive System and Role of Antioxidants on the Induced Toxicity. Life 13, 767. https://doi.org/10.3390/life13030767Sawicki, K., Czajka, M., Matysiak-Kucharek, M., Fal, B., Drop, B., Męczyńska-Wielgosz, S., Sikorska, K., Kruszewski, M., Kapka-Skrzypczak, L., 2019. Toxicity of metallic nanoparticles in the central nervous system. Nanotechnol. Rev. 8, 175–200. https://doi.org/10.1515/ntrev-2019-0017Shearer, C.J., Yu, L., Fenati, R., Sibley, A.J., Quinton, J.S., Gibson, C.T., Ellis, A.V., Andersson, G.G., Shapter, J.G., 2017. Adsorption and Desorption of Single‐Stranded DNA from Single‐Walled Carbon Nanotubes. Chem. – Asian J. 12, 1625–1634. https://doi.org/10.1002/asia.201700446Shukla, R.K., Badiye, A., Vajpayee, K., Kapoor, N., 2021. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front. Genet. 12, 728250. https://doi.org/10.3389/fgene.2021.728250Sohaebuddin, S.K., Thevenot, P.T., Baker, D., Eaton, J.W., Tang, L., 2010. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre Toxicol. 7, 22. https://doi.org/10.1186/1743-8977-7-22Sonwani, S., Madaan, S., Arora, J., Suryanarayan, S., Rangra, D., Mongia, N., Vats, T., Saxena, P., 2021. Inhalation Exposure to Atmospheric Nanoparticles and Its Associated Impacts on Human Health: A Review. Front. Sustain. Cities 3, 690444. https://doi.org/10.3389/frsc.2021.690444Sramkova, M., Kozics, K., Masanova, V., Uhnakova, I., Razga, F., Nemethova, V., Mazancova, P., Kapka-Skrzypczak, L., Kruszewski, M., Novotova, M., Puntes, V.F., Gabelova, A., 2019. Kidney nanotoxicity studied in human renal proximal tubule epithelial cell line TH1. Mutat. Res. Toxicol. Environ. Mutagen. 845, 403017. https://doi.org/10.1016/j.mrgentox.2019.01.012Sultana, S., Ahsan, S., Tanvir, S., Haque, N., Alam, F., Yellishetty, M., 2021. Coal Fly Ash Utilisation and Environmental Impact, in: Jyothi, R.K., Parhi, P.K. (Eds.), Clean Coal Technologies. Springer International Publishing, Cham, pp. 381–402. https://doi.org/10.1007/978-3-030-68502-7_15Sunoqrot, S., Niazi, M., Al-Natour, M.A., Jaber, M., Abu-Qatouseh, L., 2022. Loading of Coal Tar in Polymeric Nanoparticles as a Potential Therapeutic Modality for Psoriasis. ACS Omega 7, 7333–7340. https://doi.org/10.1021/acsomega.1c07267Suzuki, T., Miura, N., Hojo, R., Yanagiba, Y., Suda, M., Hasegawa, T., Miyagawa, M., Wang, R.-S., 2020. Genotoxicity assessment of titanium dioxide nanoparticle accumulation of 90 days in the liver of gpt delta transgenic mice. Genes Environ. 42, 7. https://doi.org/10.1186/s41021-020-0146-3Tardani, F., Sarti, S., Sennato, S., Leo, M., Filetici, P., Casciardi, S., Schiavi, P.G., Bordi, F., 2020. Experimental Evidence of Single-Stranded DNA Adsorption on Multiwalled Carbon Nanotubes. J. Phys. Chem. B 124, 2514–2525. https://doi.org/10.1021/acs.jpcb.0c00882Tong, R., Liu, J., Ma, X., Yang, Y., Shao, G., Li, J., Shi, M., 2020. Occupational exposure to respirable dust from the coal-fired power generation process: sources, concentration, and health risk assessment. Arch. Environ. Occup. Health 75, 260–273. https://doi.org/10.1080/19338244.2019.1626330Toyooka, T., Ishihama, M., Ibuki, Y., 2011. Phosphorylation of Histone H2AX Is a Powerful Tool for Detecting Chemical Photogenotoxicity. J. Invest. Dermatol. 131, 1313–1321. https://doi.org/10.1038/jid.2011.28Vallabani, N.V.S., Karlsson, H.L., 2022. Primary and Secondary Genotoxicity of Nanoparticles: Establishing a Co-Culture Protocol for Assessing Micronucleus Using Flow Cytometry. Front. Toxicol. 4, 845987. https://doi.org/10.3389/ftox.2022.845987Vargas Buonfiglio, L.G., Mudunkotuwa, I.A., Abou Alaiwa, M.H., Vanegas Calderón, O.G., Borcherding, J.A., Gerke, A.K., Zabner, J., Grassian, V.H., Comellas, A.P., 2017. Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid. Environ. Health Perspect. 125, 077003. https://doi.org/10.1289/EHP876Verma, H., Aggarwal, M., Kumar, S., 2022. Opportunities and Significance of Nanoparticle–DNA Binding in Medical Biotechnology: A Review. Cureus. https://doi.org/10.7759/cureus.31005Wan, R., Mo, Y., Feng, L., Chien, S., Tollerud, D.J., Zhang, Q., 2012. DNA Damage Caused by Metal Nanoparticles: Involvement of Oxidative Stress and Activation of ATM. Chem. Res. Toxicol. 25, 1402–1411. https://doi.org/10.1021/tx200513tWan, R., Mo, Y., Tong, R., Gao, M., Zhang, Q., 2019. Determination of Phosphorylated Histone H2AX in Nanoparticle-Induced Genotoxic Studies, in: Zhang, Q. (Ed.), Nanotoxicity, Methods in Molecular Biology. Springer New York, New York, NY, pp. 145–159. https://doi.org/10.1007/978-1-4939-8916-4_9Wu, J., Yang, Y., Tou, F., Yan, X., Dai, S., Hower, J.C., Saikia, B.K., Kersten, M., Hochella, M.F., 2023. Combustion conditions and feed coals regulating the Fe- and Ti-containing nanoparticles in various coal fly ash. J. Hazard. Mater. 445, 130482. https://doi.org/10.1016/j.jhazmat.2022.130482Xiang, Q.-Q., Kang, Y.-H., Lian, L.-H., Chen, Z.-Y., Wang, P., Hu, J.-M., Chen, L.-Q., 2022. Proteomic profiling reveals mitochondrial toxicity of nanosilver and silver nitrate in the gill of common carp. Aquat. Toxicol. 252, 106318. https://doi.org/10.1016/j.aquatox.2022.106318Xu, M., Niu, Z., Liu, C., Yan, J., Peng, B., Yang, Y., 2023. Oxidative Potential of Metal-Containing Nanoparticles in Coal Fly Ash Generated from Coal-Fired Power Plants in China. Environ. Health 1, 180–190. https://doi.org/10.1021/envhealth.3c00040Xuan, L., Ju, Z., Skonieczna, M., Zhou, P., Huang, R., 2023. Nanoparticles‐induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm 4, e327. https://doi.org/10.1002/mco2.327Yang, Y., Li, W., Kroner, E., Arzt, E., Bhushan, B., Benameur, L., Wei, L., Botta, A., Lu, Y., Lou, J., Jena, D., Nosonovsky, M., Bhushan, B., Søndergaard, T., Sekhar, P.K., Bhansali, S., Trusov, A.A., 2012. Genotoxicity of Nanoparticles, in: Bhushan, B. (Ed.), Encyclopedia of Nanotechnology. Springer Netherlands, Dordrecht, pp. 952–962. https://doi.org/10.1007/978-90-481-9751-4_335Yu, D., Xu, M., Yao, H., Liu, X., Zhou, K., Wen, C., Li, L., 2009. Physicochemical properties and potential health effects of nanoparticles from pulverized coal combustion. Sci. Bull. 54, 1243–1250. https://doi.org/10.1007/s11434-008-0582-0Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., Li, P., 2020. Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale Res. Lett. 15, 115. https://doi.org/10.1186/s11671-020-03344-7Yuan, X., Zhang, X., Sun, L., Wei, Y., Wei, X., 2019. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part. Fibre Toxicol. 16, 18. https://doi.org/10.1186/s12989-019-0299-zZakrzewska, K.E., Samluk, A., Wierzbicki, M., Jaworski, S., Kutwin, M., Sawosz, E., Chwalibog, A., Pijanowska, D.G., Pluta, K.D., 2015. Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines. PLOS ONE 10, e0122579. https://doi.org/10.1371/journal.pone.0122579Zhang, P., Lu, J., Zuo, L., Wang, Y., Liu, R., Tao, D., Chen, Z., Tao, G., Wang, K., 2023. Identification of Natural Nearly or Nanoscale Particles in Bituminous Coal: An Important Form of Elements in Coal. Sustainability 15, 6276. https://doi.org/10.3390/su15076276Zhang, R., Liu, S., Zheng, S., 2021. Characterization of nano-to-micron sized respirable coal dust: Particle surface alteration and the health impact. J. Hazard. Mater. 413, 125447. https://doi.org/10.1016/j.jhazmat.2021.125447Zhang, Y., Li, A., Gao, J., Liang, J., Cao, N., Zhou, S., Tang, X., 2022. Differences in the characteristics and pulmonary toxicity of nano- and micron-sized respirable coal dust. Respir. Res. 23, 197. https://doi.org/10.1186/s12931-022-02120-8Zhang, Z., Qiao, W., Zhu, M., Meng, L., Yan, S., Feng, R., Zhang, X., Zhang, H., Si, C., Bai, H., Li, Y., 2023. The interaction between nucleotide bases and nano carbon: The dimension dominates. Surf. Interfaces 37, 102715. https://doi.org/10.1016/j.surfin.2023.102715Zhao, Johnson, J.K., 2007. Simulation of Adsorption of DNA on Carbon Nanotubes. J. Am. Chem. Soc. 129, 10438–10445. https://doi.org/10.1021/ja071844mZhou, H., McClements, D.J., 2022. Recent Advances in the Gastrointestinal Fate of Organic and Inorganic Nanoparticles in Foods. Nanomaterials 12, 1099. https://doi.org/10.3390/nano12071099Zierold, K.M., Hagemeyer, A.N., Sears, C.G., 2020. Health symptoms among adults living near a coal-burning power plant. Arch. Environ. Occup. Health 75, 289–296. https://doi.org/10.1080/19338244.2019.1633992Geraldo León, J.A., Vázquez-Duhalt, R., Juárez Moreno, K.O., 2022. Desbalance del sistema antioxidante causado por la exposición a nanopartículas de óxido de zinc y óxido de cobre. Mundo Nano Rev. Interdiscip. En Nanociencias Nanotecnología 15, 1e–13e. https://doi.org/10.22201/ceiich.24485691e.2022.29.69701Kong, B., Seog, J.H., Graham, L.M., Lee, S.B., 2011. Experimental considerations on the cytotoxicity of nanoparticles. Nanomed. 6, 929–941. https://doi.org/10.2217/nnm.11.77Sede BarranquillaDoctorado en Genética y Biología MolecularORIGINALPDF.pdfPDF.pdfapplication/pdf5291154https://bonga.unisimon.edu.co/bitstreams/62ae5c5f-abaa-4150-8ea7-7f5ae6fe4619/download202fbf8a46e2b33de5cd27178a0f55eaMD51PDF_Resumen.pdfapplication/pdf322092https://bonga.unisimon.edu.co/bitstreams/32928223-f2d5-452f-aa82-a3840581501b/download955d27d9fb677ec296735ece71c86dd9MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/e2fdc246-1a88-4f58-9e54-91f8304921a6/downloadbb9bdc0b3349e4284e09149f943790b4MD52TEXTPDF.txtPDF.txtExtracted texttext/plain102348https://bonga.unisimon.edu.co/bitstreams/e76247be-cb64-4149-9dde-422715777680/downloadd76947374953f57574aa3c8876558a63MD54PDF_Resumen.txtPDF_Resumen.txtExtracted texttext/plain41043https://bonga.unisimon.edu.co/bitstreams/3b065c09-a74f-4f37-9abc-7895df6249fb/download7c1b71068a66bbc0d83c164033142ae2MD56PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain102348https://bonga.unisimon.edu.co/bitstreams/f0ba74ad-1383-40e5-8aba-b143ef341e69/downloadd76947374953f57574aa3c8876558a63MD58PDF_Resumen.pdf.txtPDF_Resumen.pdf.txtExtracted texttext/plain41043https://bonga.unisimon.edu.co/bitstreams/651cd429-0cbb-46f1-9888-b54b959a47a1/download7c1b71068a66bbc0d83c164033142ae2MD510THUMBNAILPDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg4143https://bonga.unisimon.edu.co/bitstreams/78511376-0cdc-45aa-8e4b-76bdc64a757c/downloadd04e4b37b42f2e705e0bb51e316e47bdMD55PDF_Resumen.jpgPDF_Resumen.jpgGenerated Thumbnailimage/jpeg5369https://bonga.unisimon.edu.co/bitstreams/4dcdce67-7c0a-4353-b1de-4ee92d854688/downloadba4a50c8bf3b92a221b96c4b59de8351MD57PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg4143https://bonga.unisimon.edu.co/bitstreams/b789f4ef-d5ab-4ae6-ae71-0c3c9e3c6f66/downloadd04e4b37b42f2e705e0bb51e316e47bdMD59PDF_Resumen.pdf.jpgPDF_Resumen.pdf.jpgGenerated Thumbnailimage/jpeg5369https://bonga.unisimon.edu.co/bitstreams/5b1faee3-4b00-41b1-8e4f-9f7f42c78c62/downloadba4a50c8bf3b92a221b96c4b59de8351MD51120.500.12442/14552oai:bonga.unisimon.edu.co:20.500.12442/145522024-08-14 21:54:12.943restrictedhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=