Multiple linear regression model applied to the projection of electricity demand in Colombia

The exigencies as soon as to competitiveness and productivity have influenced in the energetic consumption and the demand of electrical energy in Colombia, reason why at the present time it is of much interest and utility to have access to tools or valid models to reach greater knowledge in which re...

Full description

Autores:
Garcia-Guiliany, Jesús
De-la-hoz-Franco, Emiro
Rodríguez-Toscano, Andrés-David
De-la-Hoz-Hernández, Juan-David
Hernandez-Palma, Hugo G.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/4773
Acceso en línea:
https://hdl.handle.net/20.500.12442/4773
http://www.econjournals.com/index.php/ijeep/article/view/7813/4806
Palabra clave:
Energy consumption
Electric demand
Multiple linear regression model
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_4714ab6b537cfc74d970b506bf1521b2
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/4773
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Multiple linear regression model applied to the projection of electricity demand in Colombia
title Multiple linear regression model applied to the projection of electricity demand in Colombia
spellingShingle Multiple linear regression model applied to the projection of electricity demand in Colombia
Energy consumption
Electric demand
Multiple linear regression model
title_short Multiple linear regression model applied to the projection of electricity demand in Colombia
title_full Multiple linear regression model applied to the projection of electricity demand in Colombia
title_fullStr Multiple linear regression model applied to the projection of electricity demand in Colombia
title_full_unstemmed Multiple linear regression model applied to the projection of electricity demand in Colombia
title_sort Multiple linear regression model applied to the projection of electricity demand in Colombia
dc.creator.fl_str_mv Garcia-Guiliany, Jesús
De-la-hoz-Franco, Emiro
Rodríguez-Toscano, Andrés-David
De-la-Hoz-Hernández, Juan-David
Hernandez-Palma, Hugo G.
dc.contributor.author.none.fl_str_mv Garcia-Guiliany, Jesús
De-la-hoz-Franco, Emiro
Rodríguez-Toscano, Andrés-David
De-la-Hoz-Hernández, Juan-David
Hernandez-Palma, Hugo G.
dc.subject.eng.fl_str_mv Energy consumption
Electric demand
Multiple linear regression model
topic Energy consumption
Electric demand
Multiple linear regression model
description The exigencies as soon as to competitiveness and productivity have influenced in the energetic consumption and the demand of electrical energy in Colombia, reason why at the present time it is of much interest and utility to have access to tools or valid models to reach greater knowledge in which related to the possible future projections. Next, the results of a quantitative study are presented that through the analysis of data collected between 2007 and 2017 that made possible the construction of a multiple linear regression model to estimate the demand of electric energy. These types of instruments currently originate as alternatives to promote management strategies in the energy field in the country. The final results allow to visualize an estimated figure for the next periods which will serve to contrast with the official results and to generate from this information possible lines of intervention in different organisms.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-02-20T20:03:39Z
dc.date.available.none.fl_str_mv 2020-02-20T20:03:39Z
dc.date.issued.none.fl_str_mv 2020
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.eng.fl_str_mv article
dc.identifier.issn.none.fl_str_mv 21464553
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/4773
dc.identifier.url.none.fl_str_mv http://www.econjournals.com/index.php/ijeep/article/view/7813/4806
identifier_str_mv 21464553
url https://hdl.handle.net/20.500.12442/4773
http://www.econjournals.com/index.php/ijeep/article/view/7813/4806
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv EconJournals
dc.source.eng.fl_str_mv International Journal of Energy Economics and Policy
dc.source.none.fl_str_mv Vol. 10 N° 1, (2020)
institution Universidad Simón Bolívar
dc.source.uri.none.fl_str_mv http://www.econjournals.com/index.php/ijeep/article/view/7813/4806
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/7d31735b-d30f-4431-8971-bd697419d147/download
https://bonga.unisimon.edu.co/bitstreams/06f2e667-a537-4954-82f9-e33b410bccf5/download
https://bonga.unisimon.edu.co/bitstreams/5c9f790f-2dac-40d8-9a82-71ace1ad65dc/download
https://bonga.unisimon.edu.co/bitstreams/fb3dec90-6b06-4385-8e68-267aa1696f64/download
https://bonga.unisimon.edu.co/bitstreams/1d6c0b82-3d62-4f45-92b4-5466ec6c2d82/download
https://bonga.unisimon.edu.co/bitstreams/9618ae17-9814-4123-9227-f3bd7e2f647a/download
https://bonga.unisimon.edu.co/bitstreams/c6b591aa-bc08-4360-b7fe-25352422b563/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
5b36a47370607bf074d6e9ec3dc5fe92
32a28540c859543dca2dcfe63a5bee81
4372c285c64c823e0142d63901a8d8c3
85c68a3cdd97b5291bfc0fb8db17cf21
8b9cd7956a59b50e063955a78564271a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076093578084352
spelling Garcia-Guiliany, Jesús4e1d5638-e376-463e-86e4-f1fbff0b8f60De-la-hoz-Franco, Emiro494bbd4a-f88a-4706-92c7-7842c0418615Rodríguez-Toscano, Andrés-David4a44eed1-a787-4334-a071-01eb2e3b7953De-la-Hoz-Hernández, Juan-Davidd7115784-fb3b-4bd5-bcd3-77178ca162b6Hernandez-Palma, Hugo G.f491a014-123c-4f76-85ba-2cddc5f6f38c2020-02-20T20:03:39Z2020-02-20T20:03:39Z202021464553https://hdl.handle.net/20.500.12442/4773http://www.econjournals.com/index.php/ijeep/article/view/7813/4806The exigencies as soon as to competitiveness and productivity have influenced in the energetic consumption and the demand of electrical energy in Colombia, reason why at the present time it is of much interest and utility to have access to tools or valid models to reach greater knowledge in which related to the possible future projections. Next, the results of a quantitative study are presented that through the analysis of data collected between 2007 and 2017 that made possible the construction of a multiple linear regression model to estimate the demand of electric energy. These types of instruments currently originate as alternatives to promote management strategies in the energy field in the country. The final results allow to visualize an estimated figure for the next periods which will serve to contrast with the official results and to generate from this information possible lines of intervention in different organisms.pdfengEconJournalsAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2International Journal of Energy Economics and PolicyVol. 10 N° 1, (2020)http://www.econjournals.com/index.php/ijeep/article/view/7813/4806Energy consumptionElectric demandMultiple linear regression modelMultiple linear regression model applied to the projection of electricity demand in Colombiaarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Andrews-Speed, P., Liao, X., Dannreuther, R. (2014), The Strategic Implications of China’s Energy Needs. London: Routledge.Ardila, L.M.C., Cardona, C.J.F. (2017), Structure and current state of the wholesale electricity markets. IEEE Latin America Transactions, 15(4), 669-674.Fabra, N., Reguant, M. (2014), Pass-through of emissions costs in electricity markets. American Economic Review, 104(9), 2872-2899.Government Publications Office. editor. (GPO). (2016), International Energy Outlook 2016: With Projections to 2040. Government Printing Office.Holmberg, K., Erdemir, A. (2017), Influence of tribology on global energy consumption, costs and emissions. Friction, 5(3), 263-284.Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F. (2015), Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power and Energy Systems, 67, 431-438.Montgomery, D., Peck, E.A., Vining, G. (2012), Introduction to Linear Regression Analysis. Vol. 821. New Jersey: John Wiley and Sons.Nejat, P., Jomehzadeh, F., Taheri, M.M., Gohari, M., Majid, M.Z.A. (2015), A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renewable and Sustainable Energy Reviews, 43, 843-862.Ñustes, W., Riviera, S. (2017), Colombia: territorio de inversión en fuentes no convencionales de energía renovable para la generación eléctrica. Revista Ingeniería, Investigación y Desarrollo, 17, 37-48.Pukšec, T., Mathiesen, B.V., Novosel, T., Duić, N. (2014), Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia. Energy, 76, 198-209.Sánchez-Villegas, A. (2014), In: Martínez-González, M.A., Faulín, F.J., editors. Bioestadística Amigable. Barcelona: Elsevier.Stephanidis, C. editor. (2018), HCI International 2018 Posters’ Extended Abstracts: 20th International Conference. Vol. 852. HCI International 2018, Las Vegas, NV, USA, Proceedings. Springer.Banco Mundial. (2017), Sección Indicadores. Available from: https:// www.datos.bancomundial.org/indicador.Informe de Operación del Sistema Interconectado Nacional (SIN). (2017), Demanda de Energía Nacional. Available from: http:// www.informesanuales.xm.com.co/2017/SitePages/operacion/4-1- Demanda-de-energia-nacional.aspx.Palma, H.H. (2017), Direccionamiento estratégico para la dinamización del sector salud en el departamento del Atlántico. BIOCIENCIAS, 12(1), 79-84.Unidad de Planeación Minera y Energética (UPME). (2015), Plan Energetico Nacional Colombia: Ideario Energético 2050. Available from: http://www1.upme.gov.co/Documents/PEN_ IdearioEnergetico2050.pdf.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/7d31735b-d30f-4431-8971-bd697419d147/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/06f2e667-a537-4954-82f9-e33b410bccf5/download733bec43a0bf5ade4d97db708e29b185MD53ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf383142https://bonga.unisimon.edu.co/bitstreams/5c9f790f-2dac-40d8-9a82-71ace1ad65dc/download5b36a47370607bf074d6e9ec3dc5fe92MD51TEXTMultiplinearregressimodel.pdf.txtMultiplinearregressimodel.pdf.txtExtracted texttext/plain17899https://bonga.unisimon.edu.co/bitstreams/fb3dec90-6b06-4385-8e68-267aa1696f64/download32a28540c859543dca2dcfe63a5bee81MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain18069https://bonga.unisimon.edu.co/bitstreams/1d6c0b82-3d62-4f45-92b4-5466ec6c2d82/download4372c285c64c823e0142d63901a8d8c3MD56THUMBNAILMultiplinearregressimodel.pdf.jpgMultiplinearregressimodel.pdf.jpgGenerated Thumbnailimage/jpeg1880https://bonga.unisimon.edu.co/bitstreams/9618ae17-9814-4123-9227-f3bd7e2f647a/download85c68a3cdd97b5291bfc0fb8db17cf21MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg6305https://bonga.unisimon.edu.co/bitstreams/c6b591aa-bc08-4360-b7fe-25352422b563/download8b9cd7956a59b50e063955a78564271aMD5720.500.12442/4773oai:bonga.unisimon.edu.co:20.500.12442/47732024-08-14 21:51:55.136http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u