Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?

Chronic pain (CP) is a severe clinical entity with devastating physical and emotional consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment approaches appear to be insufficient for its management. Moreover, considering the adverse effects of traditional an...

Full description

Autores:
Chávez-Castillo, Mervin
Ortega, Ángel
Cudris-Torres, Lorena
Duran, Pablo
Rojas, Milagros
Manzano, Alexander
Garrido, Bermary
Salazar, Juan
Silva, Aljadis
Rojas-Gomez, Diana Marcela
De Sanctis, Juan B.
Bermúdez, Valmore
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/8636
Acceso en línea:
https://hdl.handle.net/20.500.12442/8636
https:// doi.org/10.3390/ijms221910370
https://www.mdpi.com/1422-0067/22/19/10370/htm
Palabra clave:
Chronic pain
Specialized pro-resolving lipid mediators
Inflammation
Long-term potentiation
Central nervous system sensitization
Polyunsaturated fatty acids
Eicosanoids
Nociception
Omega 3 fatty acids
Pain management
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_448223de8255da7849e94fbcd0b27478
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/8636
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?
title Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?
spellingShingle Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?
Chronic pain
Specialized pro-resolving lipid mediators
Inflammation
Long-term potentiation
Central nervous system sensitization
Polyunsaturated fatty acids
Eicosanoids
Nociception
Omega 3 fatty acids
Pain management
title_short Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?
title_full Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?
title_fullStr Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?
title_full_unstemmed Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?
title_sort Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?
dc.creator.fl_str_mv Chávez-Castillo, Mervin
Ortega, Ángel
Cudris-Torres, Lorena
Duran, Pablo
Rojas, Milagros
Manzano, Alexander
Garrido, Bermary
Salazar, Juan
Silva, Aljadis
Rojas-Gomez, Diana Marcela
De Sanctis, Juan B.
Bermúdez, Valmore
dc.contributor.author.none.fl_str_mv Chávez-Castillo, Mervin
Ortega, Ángel
Cudris-Torres, Lorena
Duran, Pablo
Rojas, Milagros
Manzano, Alexander
Garrido, Bermary
Salazar, Juan
Silva, Aljadis
Rojas-Gomez, Diana Marcela
De Sanctis, Juan B.
Bermúdez, Valmore
dc.subject.eng.fl_str_mv Chronic pain
Specialized pro-resolving lipid mediators
Inflammation
Long-term potentiation
Central nervous system sensitization
Polyunsaturated fatty acids
Eicosanoids
Nociception
Omega 3 fatty acids
Pain management
topic Chronic pain
Specialized pro-resolving lipid mediators
Inflammation
Long-term potentiation
Central nervous system sensitization
Polyunsaturated fatty acids
Eicosanoids
Nociception
Omega 3 fatty acids
Pain management
description Chronic pain (CP) is a severe clinical entity with devastating physical and emotional consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment approaches appear to be insufficient for its management. Moreover, considering the adverse effects of traditional analgesic treatments, specialized pro-resolving lipid mediators (SPMs) have emerged as a promising alternative for CP. These include various bioactive molecules such as resolvins, maresins, and protectins, derived from ω-3 polyunsaturated fatty acids (PUFAs); and lipoxins, produced from ω-6 PUFAs. Indeed, SPMs have been demonstrated to play a central role in the regulation and resolution of the inflammation associated with CP. Furthermore, these molecules can modulate neuroinflammation and thus inhibit central and peripheral sensitizations, as well as long-term potentiation, via immunomodulation and regulation of nociceptor activity and neuronal pathways. In this context, preclinical and clinical studies have evidenced that the use of SPMs is beneficial in CP-related disorders, including rheumatic diseases, migraine, neuropathies, and others. This review integrates current preclinical and clinical knowledge on the role of SPMs as a potential therapeutic tool for the management of patients with CP.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-05T14:51:18Z
dc.date.available.none.fl_str_mv 2021-10-05T14:51:18Z
dc.date.issued.none.fl_str_mv 2021
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.citation.eng.fl_str_mv Chávez-Castillo, M.; Ortega, Á.; Cudris-Torres, L.; Duran, P.; Rojas, M.; Manzano, A.; Garrido, B.; Salazar, J.; Silva, A.; Rojas-Gomez, D.M.; et al. Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?. Int. J. Mol. Sci. 2021, 22, 10370. https:// doi.org/10.3390/ijms221910370
dc.identifier.issn.none.fl_str_mv 14220067
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/8636
dc.identifier.doi.none.fl_str_mv https:// doi.org/10.3390/ijms221910370
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/1422-0067/22/19/10370/htm
identifier_str_mv Chávez-Castillo, M.; Ortega, Á.; Cudris-Torres, L.; Duran, P.; Rojas, M.; Manzano, A.; Garrido, B.; Salazar, J.; Silva, A.; Rojas-Gomez, D.M.; et al. Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?. Int. J. Mol. Sci. 2021, 22, 10370. https:// doi.org/10.3390/ijms221910370
14220067
url https://hdl.handle.net/20.500.12442/8636
https:// doi.org/10.3390/ijms221910370
https://www.mdpi.com/1422-0067/22/19/10370/htm
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv MDPI
dc.source.eng.fl_str_mv International Journal of Molecular Sciences
dc.source.none.fl_str_mv Vol. 22, No.19 (2021)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/87e61439-077b-44c5-aa8b-12af0dcb947a/download
https://bonga.unisimon.edu.co/bitstreams/22264a68-46da-49e7-b95a-deb238490065/download
https://bonga.unisimon.edu.co/bitstreams/59330530-9b7a-4ed8-8e75-aa24e375d220/download
https://bonga.unisimon.edu.co/bitstreams/9c63a62d-c49d-44ef-8cd1-1c9920983d66/download
https://bonga.unisimon.edu.co/bitstreams/659273a9-e4db-4466-8f4b-ac7da3513d33/download
https://bonga.unisimon.edu.co/bitstreams/38a923b0-1082-48aa-9294-79ed47322486/download
https://bonga.unisimon.edu.co/bitstreams/4ca85e77-2c7d-46c0-a132-b84e1a2cd946/download
bitstream.checksum.fl_str_mv 84cde137faa4669d14b92e30f01cf381
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
02f3fb8a11d50e9c7da0c73596eea805
e0a75ae7277e8f1effb86dd1626c595d
a25aa72f1d745b4ecc119a3d85cf07af
5a0b7d6ec572209032a38909520506dd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100479846449152
spelling Chávez-Castillo, Mervin912e1d3d-18fb-43af-8edb-826137f74a5aOrtega, Ángelb6a809bb-4d26-4e53-9419-e4eb9fb40a9bCudris-Torres, Lorenaf795de95-c059-4cdf-9b5e-0f60feec0752Duran, Pablo09ab4429-4e0a-42c4-a4e2-27b3560375bcRojas, Milagrosd07a9d4d-cce2-438c-b4a0-fc5ed4af1a67Manzano, Alexander0dd1f5fe-19cd-42e0-b698-34b17a178629Garrido, Bermary5bac9928-0ee3-4e86-9c28-f6b1bff624e9Salazar, Juanfbd053e7-5aea-424c-812f-92153ecb9181Silva, Aljadis970fb948-70da-438f-95e6-6d0de2c1f9f6Rojas-Gomez, Diana Marcelad58335c1-9d5f-4585-b1a2-faa5cc09780aDe Sanctis, Juan B.ca98a00e-c126-4f97-bdb0-a08c25ad8c59Bermúdez, Valmore29f9aa18-16a4-4fd3-8ce5-ed94a0b8663a2021-10-05T14:51:18Z2021-10-05T14:51:18Z2021Chávez-Castillo, M.; Ortega, Á.; Cudris-Torres, L.; Duran, P.; Rojas, M.; Manzano, A.; Garrido, B.; Salazar, J.; Silva, A.; Rojas-Gomez, D.M.; et al. Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?. Int. J. Mol. Sci. 2021, 22, 10370. https:// doi.org/10.3390/ijms22191037014220067https://hdl.handle.net/20.500.12442/8636https:// doi.org/10.3390/ijms221910370https://www.mdpi.com/1422-0067/22/19/10370/htmChronic pain (CP) is a severe clinical entity with devastating physical and emotional consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment approaches appear to be insufficient for its management. Moreover, considering the adverse effects of traditional analgesic treatments, specialized pro-resolving lipid mediators (SPMs) have emerged as a promising alternative for CP. These include various bioactive molecules such as resolvins, maresins, and protectins, derived from ω-3 polyunsaturated fatty acids (PUFAs); and lipoxins, produced from ω-6 PUFAs. Indeed, SPMs have been demonstrated to play a central role in the regulation and resolution of the inflammation associated with CP. Furthermore, these molecules can modulate neuroinflammation and thus inhibit central and peripheral sensitizations, as well as long-term potentiation, via immunomodulation and regulation of nociceptor activity and neuronal pathways. In this context, preclinical and clinical studies have evidenced that the use of SPMs is beneficial in CP-related disorders, including rheumatic diseases, migraine, neuropathies, and others. This review integrates current preclinical and clinical knowledge on the role of SPMs as a potential therapeutic tool for the management of patients with CP.pdfengMDPIAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Molecular SciencesVol. 22, No.19 (2021)Chronic painSpecialized pro-resolving lipid mediatorsInflammationLong-term potentiationCentral nervous system sensitizationPolyunsaturated fatty acidsEicosanoidsNociceptionOmega 3 fatty acidsPain managementSpecialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy?info:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Geurts, J.W.; Willems, P.C.; Lockwood, C.; van Kleef, M.; Kleijnen, J.; Dirksen, C. Patient Expectations for Management of Chronic Non-Cancer Pain: A Systematic Review. Health Expect. 2017, 20, 1201–1217. [CrossRef]GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [CrossRef]Fayaz, A.; Croft, P.; Langford, R.M.; Donaldson, L.J.; Jones, G.T. Prevalence of Chronic Pain in the UK: A Systematic Review and Meta-Analysis of Population Studies. BMJ Open 2016, 6, e010364. [CrossRef] [PubMed]Kheiry, F.; Rakhshan, M.; Shaygan, M. The prevalence and associated factors of chronic pain in nurses Iran. Latinoam. Hipertens. 2019, 14, 20–25.Dahlhamer, J.; Lucas, J.; Zelaya, C.; Nahin, R.; Mackey, S.; DeBar, L.; Kerns, R.; Von Korff, M.; Porter, L.; Helmick, C. Prevalence of Chronic Pain and High-Impact Chronic Pain Among Adults—United States, 2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1001–1006. [CrossRef] [PubMed]World Health Organization. Opioid Overdose. Available online: https://www.who.int/news-room/fact-sheets/detail/opioidoverdose (accessed on 21 June 2021).Ji, R.-R.; Xu, Z.-Z.; Gao, Y.-J. Emerging Targets in Neuroinflammation-Driven Chronic Pain. Nat. Rev. Drug Discov. 2014, 13, 533–548. [CrossRef]Valdes, A.M.; Ravipati, S.; Menni, C.; Abhishek, A.; Metrustry, S.; Harris, J.; Nessa, A.; Williams, F.M.K.; Spector, T.D.; Doherty, M.; et al. Association of the Resolvin Precursor 17-HDHA, but Not D- or E- Series Resolvins, with Heat Pain Sensitivity and Osteoarthritis Pain in Humans. Sci. Rep. 2017, 7, 10748. [CrossRef]Chiang, N.; Serhan, C.N. Structural Elucidation and Physiologic Functions of Specialized Pro-Resolving Mediators and Their Receptors. Mol. Asp. Med. 2017, 58, 114–129. [CrossRef]Fattori, V.; Zaninelli, T.H.; Rasquel-Oliveira, F.S.; Casagrande, R.; Verri, W.A. Specialized Pro-Resolving Lipid Mediators: A New Class of Non-Immunosuppressive and Non-Opioid Analgesic Drugs. Pharmacol. Res. 2020, 151, 104549. [CrossRef] [PubMed]Martini, A.C.; Berta, T.; Forner, S.; Chen, G.; Bento, A.F.; Ji, R.-R.; Rae, G.A. Lipoxin A4 Inhibits Microglial Activation and Reduces Neuroinflammation and Neuropathic Pain after Spinal Cord Hemisection. J. Neuroinflamm. 2016, 13, 75. [CrossRef]Goldberg, R.J.; Katz, J. A Meta-Analysis of the Analgesic Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation for Inflammatory Joint Pain. Pain 2007, 129, 210–223. [CrossRef] [PubMed]Calder, P.C. Polyunsaturated Fatty Acids and Inflammatory Processes: New Twists in an Old Tale. Biochimie 2009, 91, 791–795. [CrossRef]Zhang, L.-Y.; Jia, M.-R.; Sun, T. The Roles of Special Proresolving Mediators in Pain Relief. Rev. Neurosci. 2018, 29, 645–660. [CrossRef] [PubMed]Schaller, M.S.; Zahner, G.J.; Gasper, W.J.; Harris, W.S.; Conte, M.S.; Hills, N.K.; Grenon, S.M. Relationship between the Omega-3 Index and Specialized pro-Resolving Lipid Mediators in Patients with Peripheral Arterial Disease Taking Fish Oil Supplements. J. Clin. Lipidol. 2017, 11, 1289–1295. [CrossRef]Levy, B.D. Resolvins and Protectins: Natural Pharmacophores for Resolution Biology. Prostaglandins Leukot. Essent. Fatty Acids 2010, 82, 327–332. [CrossRef]Patrignani, P.; Patrono, C. Cyclooxygenase Inhibitors: From Pharmacology to Clinical Read-Outs. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2015, 1851, 422–432. [CrossRef]Serhan, C.N. Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology. Nature 2014, 510, 92–101. [CrossRef]Recchiuti, A.; Serhan, C.N. Pro-Resolving Lipid Mediators (SPMs) and Their Actions in Regulating MiRNA in Novel Resolution Circuits in Inflammation. Front. Immunol. 2012, 3, 298. [CrossRef] [PubMed]Dalli, J.; Serhan, C.N. Pro-Resolving Mediators in Regulating and Conferring Macrophage Function. Front. Immunol. 2017, 8, 1400. [CrossRef]Serhan, C.N. Resolution Phase of Inflammation: Novel Endogenous Anti-Inflammatory and Proresolving Lipid Mediators and Pathways. Annu. Rev. Immunol. 2007, 25, 101–137. [CrossRef] [PubMed]Levy, B.D.; Clish, C.B.; Schmidt, B.; Gronert, K.; Serhan, C.N. Lipid Mediator Class Switching during Acute Inflammation: Signals in Resolution. Nat. Immunol. 2001, 2, 612–619. [CrossRef]Serhan, C.N.; Levy, B.D. Resolvins in Inflammation: Emergence of the pro-Resolving Superfamily of Mediators. J. Clin. Investig. 2018, 128, 2657–2669. [CrossRef] [PubMed]Serhan, C.N.; Chiang, N.; Dalli, J.; Levy, B.D. Lipid Mediators in the Resolution of Inflammation. Cold Spring Harb. Perspect. Biol. 2014, 7, a016311. [CrossRef]Fiore, S.; Ryeom, S.W.; Weller, P.F.; Serhan, C.N. Lipoxin Recognition Sites. Specific Binding of Labeled Lipoxin A4 with Human Neutrophils. J. Biol. Chem. 1992, 267, 16168–16176. [CrossRef]Minciullo, P.L.; Catalano, A.; Mandraffino, G.; Casciaro, M.; Crucitti, A.; Maltese, G.; Morabito, N.; Lasco, A.; Gangemi, S.; Basile, G. Inflammaging and Anti-Inflammaging: The Role of Cytokines in Extreme Longevity. Arch. Immunol. Ther. Exp. 2016, 64, 111–126. [CrossRef] [PubMed]Serhan, C.N.; Krishnamoorthy, S.; Recchiuti, A.; Chiang, N. Novel Anti-Inflammatory–pro-Resolving Mediators and Their Receptors. Curr. Top. Med. Chem. 2011, 11, 629–647. [CrossRef]McMahon, B.; Godson, C. Lipoxins: Endogenous Regulators of Inflammation. Am. J. Physiol. Renal Physiol. 2004, 286, F189–F201. [CrossRef]Kang, Y.; Taddeo, B.; Varai, G.; Varga, J.; Fiore, S. Mutations of Serine 236–237 and Tyrosine 302 Residues in the Human Lipoxin A4 Receptor Intracellular Domains Result in Sustained Signaling. Biochemistry 2000, 39, 13551–13557. [CrossRef]Bonnekoh, H.; Scheffel, J.; Wu, J.; Hoffmann, S.; Maurer, M.; Krause, K. Skin and Systemic Inflammation in Schnitzler’s Syndrome Are Associated With Neutrophil Extracellular Trap Formation. Front. Immunol. 2019, 10, 546. [CrossRef]Barbu, E.A.; Mendelsohn, L.; Samsel, L.; Thein, S.L. Pro-Inflammatory Cytokines Associate with NETosis during Sickle Cell Vaso-Occlusive Crises. Cytokine 2020, 127, 154933. [CrossRef]Li, X.; Yuan, K.; Zhu, Q.; Lu, Q.; Jiang, H.; Zhu, M.; Huang, G.; Xu, A. Andrographolide Ameliorates Rheumatoid Arthritis by Regulating the Apoptosis-NETosis Balance of Neutrophils. Int. J. Mol. Sci. 2019, 20, 5035. [CrossRef] [PubMed]Headland, S.E.; Norling, L.V. The Resolution of Inflammation: Principles and Challenges. Semin. Immunol. 2015, 27, 149–160. [CrossRef] [PubMed]Romano, M.; Cianci, E.; Simiele, F.; Recchiuti, A. Lipoxins and Aspirin-Triggered Lipoxins in Resolution of Inflammation. Eur. J. Pharmacol. 2015, 760, 49–63. [CrossRef]Chiang, N.; Bermudez, E.A.; Ridker, P.M.; Hurwitz, S.; Serhan, C.N. Aspirin Triggers Antiinflammatory 15-Epi-Lipoxin A4 and Inhibits Thromboxane in a Randomized Human Trial. Proc. Natl. Acad. Sci. USA 2004, 101, 15178–15183. [CrossRef] [PubMed]Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving Inflammation: Dual Anti-Inflammatory and pro-Resolution Lipid Mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [CrossRef] [PubMed]O’Meara, S.J.; Rodgers, K.; Godson, C. Lipoxins: Update and Impact of Endogenous pro-Resolution Lipid Mediators. Rev. Physiol. Biochem. Pharmacol. 2008, 160, 47–70. [CrossRef]Recchiuti, A.; Mattoscio, D.; Isopi, E. Roles, Actions, and Therapeutic Potential of Specialized Pro-Resolving Lipid Mediators for the Treatment of Inflammation in Cystic Fibrosis. Front. Pharmacol. 2019, 10, 252. [CrossRef]Ryan, A.; Godson, C. Lipoxins: Regulators of Resolution. Curr. Opin. Pharmacol. 2010, 10, 166–172. [CrossRef]Maderna, P.; Cottell, D.C.; Berlasconi, G.; Petasis, N.A.; Brady, H.R.; Godson, C. Lipoxins Induce Actin Reorganization in Monocytes and Macrophages but Not in Neutrophils: Differential Involvement of Rho GTPases. Am. J. Pathol. 2002, 160, 2275–2283. [CrossRef]Levy, B.D.; Serhan, C.N. Resolution of Acute Inflammation in the Lung. Annu. Rev. Physiol. 2014, 76, 467–492. [CrossRef] [PubMed]Serhan, C.N.; Savill, J. Resolution of Inflammation: The Beginning Programs the End. Nat. Immunol. 2005, 6, 1191–1197. [CrossRef] [PubMed]Dalli, J.; Serhan, C. Macrophage Proresolving Mediators-the When and Where. Microbiol. Spectr. 2016, 4. [CrossRef] [PubMed]Ariel, A.; Chiang, N.; Arita, M.; Petasis, N.A.; Serhan, C.N. Aspirin-Triggered Lipoxin A4 and B4 Analogs Block Extracellular Signal-Regulated Kinase-Dependent TNF-Alpha Secretion from Human T Cells. J. Immunol. 2003, 170, 6266–6272. [CrossRef] [PubMed]Chiurchiù, V.; Leuti, A.; Maccarrone, M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front. Immunol. 2018, 9, 38. [CrossRef] [PubMed]Tungen, J.E.; Gerstmann, L.; Vik, A.; De Matteis, R.; Colas, R.A.; Dalli, J.; Chiang, N.; Serhan, C.N.; Kalesse, M.; Hansen, T.V. Resolving Inflammation: Synthesis, Configurational Assignment, and Biological Evaluations of RvD1n-3 DPA. Chemistry 2019, 25, 1476–1480. [CrossRef]Latremoliere, A.; Woolf, C.J. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J. Pain 2009, 10, 895–926. [CrossRef]Christensen, J.E.; Andreasen, S.O.; Christensen, J.P.; Thomsen, A.R. CD11b Expression as a Marker to Distinguish between Recently Activated Effector CD8(+) T Cells and Memory Cells. Int. Immunol. 2001, 13, 593–600. [CrossRef]Chiang, N.; Dalli, J.; Colas, R.A.; Serhan, C.N. Identification of Resolvin D2 Receptor Mediating Resolution of Infections and Organ Protection. J. Exp. Med. 2015, 212, 1203–1217. [CrossRef]Chiang, N.; de la Rosa, X.; Libreros, S.; Serhan, C.N. Novel Resolvin D2 Receptor Axis in Infectious Inflammation. J. Immunol. 2017, 198, 842–851. [CrossRef]Duffney, P.F.; Falsetta, M.L.; Rackow, A.R.; Thatcher, T.H.; Phipps, R.P.; Sime, P.J. Key Roles for Lipid Mediators in the Adaptive Immune Response. J. Clin. Investig. 2018, 128, 2724–2731. [CrossRef]Kim, N.; Ramon, S.; Thatcher, T.H.; Woeller, C.F.; Sime, P.J.; Phipps, R.P. Specialized Proresolving Mediators (SPMs) Inhibit Human B-Cell IgE Production. Eur. J. Immunol. 2016, 46, 81–91. [CrossRef]Chen, G.; Zhang, Y.-Q.; Qadri, Y.J.; Serhan, C.N.; Ji, R.-R. Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron 2018, 100, 1292–1311. [CrossRef]Dartt, D.A.; Hodges, R.R.; Serhan, C.N. Immunoresolvent Resolvin D1 Maintains the Health of the Ocular Surface. Adv. Exp. Med. Biol. 2019, 1161, 13–25. [CrossRef]Spite, M.; Norling, L.V.; Summers, L.; Yang, R.; Cooper, D.; Petasis, N.A.; Flower, R.J.; Perretti, M.; Serhan, C.N. Resolvin D2 Is a Potent Regulator of Leukocytes and Controls Microbial Sepsis. Nature 2009, 461, 1287–1291. [CrossRef] [PubMed]Mariani, F.; Roncucci, L. Chemerin/ChemR23 Axis in Inflammation Onset and Resolution. Inflamm. Res. 2015, 64, 85–95. [CrossRef]Haworth, O.; Cernadas, M.; Levy, B.D. NK Cells Are Effectors for Resolvin E1 in the Timely Resolution of Allergic Airway Inflammation. J. Immunol. 2011, 186, 6129–6135. [CrossRef] [PubMed]Serhan, C.N. Discovery of Specialized Pro-Resolving Mediators Marks the Dawn of Resolution Physiology and Pharmacology. Mol. Asp. Med. 2017, 58, 1–11. [CrossRef] [PubMed]Saeki, K.; Yokomizo, T. Identification, Signaling, and Functions of LTB4 Receptors. Semin. Immunol. 2017, 33, 30–36. [CrossRef] [PubMed]Wu, C.; Sun, A.; Zou, Y.; Ge, J. “Pro-Resolution” and Anti-Inflammation, a Role of RvE1 in Anti-Atherosclerosis and Plaque Stabilization. Med. Hypotheses 2008, 71, 252–255. [CrossRef]Buckley, C.D.; Gilroy, D.W.; Serhan, C.N. Proresolving Lipid Mediators and Mechanisms in the Resolution of Acute Inflammation. Immunity 2014, 40, 315–327. [CrossRef]Serhan, C.N.; Dalli, J.; Colas, R.A.; Winkler, J.W.; Chiang, N. Protectins and Maresins: New pro-Resolving Families of Mediators in Acute Inflammation and Resolution Bioactive Metabolome. Biochim. Biophys. Acta 2015, 1851, 397–413. [CrossRef]Tang, S.; Wan, M.; Huang, W.; Stanton, R.C.; Xu, Y. Maresins: Specialized Proresolving Lipid Mediators and Their Potential Role in Inflammatory-Related Diseases. Mediat. Inflamm. 2018, 2018, 2380319. [CrossRef]Hwang, S.-M.; Chung, G.; Kim, Y.H.; Park, C.-K. The Role of Maresins in Inflammatory Pain: Function of Macrophages in Wound Regeneration. Int. J. Mol. Sci. 2019, 20, 5849. [CrossRef] [PubMed]Häcker, H.; Karin, M. Regulation and Function of IKK and IKK-Related Kinases. Sci. STKE 2006, 2006, re13. [CrossRef]Bitto, A.; Minutoli, L.; David, A.; Irrera, N.; Rinaldi, M.; Venuti, F.S.; Squadrito, F.; Altavilla, D. Flavocoxid, a Dual Inhibitor of COX-2 and 5-LOX of Natural Origin, Attenuates the Inflammatory Response and Protects Mice from Sepsis. Crit. Care 2012, 16, R32. [CrossRef]Kohli, P.; Levy, B.D. Resolvins and Protectins: Mediating Solutions to Inflammation. Br. J. Pharmacol. 2009, 158, 960–971. [CrossRef] [PubMed]Serhan, C.N. Novel Chemical Mediators in the Resolution of Inflammation: Resolvins and Protectins. Anesthesiol. Clin. 2006, 24, 341–364. [CrossRef] [PubMed]Kytikova, O.; Novgorodtseva, T.; Denisenko, Y.; Antonyuk, M.; Gvozdenko, T. Pro-Resolving Lipid Mediators in the Pathophysiology of Asthma. Medicina 2019, 55, 284. [CrossRef] [PubMed]Bang, S.; Xie, Y.-K.; Zhang, Z.-J.; Wang, Z.; Xu, Z.-Z.; Ji, R.-R. GPR37 Regulates Macrophage Phagocytosis and Resolution of Inflammatory Pain. J. Clin. Investig. 2018, 128, 3568–3582. [CrossRef]Freire, M.O.; Van Dyke, T.E. Natural Resolution of Inflammation. Periodontology 2000 2013, 63, 149–164. [CrossRef]Totsch, S.K.; Sorge, R.E. Immune System Involvement in Specific Pain Conditions. Mol. Pain 2017, 13, 1744806917724559. [CrossRef]Chavan, S.S.; Pavlov, V.A.; Tracey, K.J. Mechanisms and Therapeutic Relevance of Neuro-Immune Communication. Immunity 2017, 46, 927–942. [CrossRef] [PubMed]Cury, Y.; Picolo, G.; Gutierrez, V.P.; Ferreira, S.H. Pain and Analgesia: The Dual Effect of Nitric Oxide in the Nociceptive System. Nitric Oxide 2011, 25, 243–254. [CrossRef]Xu, Z.-Z.; Zhang, L.; Liu, T.; Park, J.Y.; Berta, T.; Yang, R.; Serhan, C.N.; Ji, R.-R. Resolvins RvE1 and RvD1 Attenuate Inflammatory Pain via Central and Peripheral Actions. Nat. Med. 2010, 16, 592–597. [CrossRef] [PubMed]Herová, M.; Schmid, M.; Gemperle, C.; Hersberger, M. ChemR23, the Receptor for Chemerin and Resolvin E1, Is Expressed and Functional on M1 but Not on M2 Macrophages. J. Immunol. 2015, 194, 2330–2337. [CrossRef] [PubMed]Scholz, J.; Woolf, C.J. The Neuropathic Pain Triad: Neurons, Immune Cells and Glia. Nat. Neurosci. 2007, 10, 1361–1368. [CrossRef]Bingham, B.; Ajit, S.K.; Blake, D.R.; Samad, T.A. The Molecular Basis of Pain and Its Clinical Implications in Rheumatology. Nat. Clin. Pract. Rheumatol. 2009, 5, 28–37. [CrossRef]Jara-Oseguera, A.; Simon, S.A.; Rosenbaum, T. TRPV1: On the Road to Pain Relief. Curr. Mol. Pharmacol. 2008, 1, 255–269. [CrossRef]Campbell, J.N.; Raja, S.N.; Meyer, R.A.; Mackinnon, S.E. Myelinated Afferents Signal the Hyperalgesia Associated with Nerve Injury. Pain 1988, 32, 89–94. [CrossRef]Schmidtko, A. Nitric Oxide-Mediated Pain Processing in the Spinal Cord. Handb. Exp. Pharmacol. 2015, 227, 103–117. [CrossRef]Lim, J.Y.; Park, C.-K.; Hwang, S.W. Biological Roles of Resolvins and Related Substances in the Resolution of Pain. Biomed. Res. Int. 2015, 2015, 830930. [CrossRef]Serhan, C.N.; Chiang, N.; Dalli, J. New Pro-Resolving n-3 Mediators Bridge Resolution of Infectious Inflammation to Tissue Regeneration. Mol. Asp. Med. 2018, 64, 1–17. [CrossRef] [PubMed]Schwanke, R.C.; Marcon, R.; Bento, A.F.; Calixto, J.B. EPA- and DHA-Derived Resolvins’ Actions in Inflammatory Bowel Disease. Eur. J. Pharmacol. 2016, 785, 156–164. [CrossRef]Serhan, C.N.; Dalli, J.; Karamnov, S.; Choi, A.; Park, C.-K.; Xu, Z.-Z.; Ji, R.-R.; Zhu, M.; Petasis, N.A. Macrophage Proresolving Mediator Maresin 1 Stimulates Tissue Regeneration and Controls Pain. FASEB J. 2012, 26, 1755–1765. [CrossRef]Liao, H.-Y.; Hsieh, C.-L.; Huang, C.-P.; Lin, Y.-W. Electroacupuncture Attenuates CFA-Induced Inflammatory Pain by Suppressing Nav1.8 through S100B, TRPV1, Opioid, and Adenosine Pathways in Mice. Sci. Rep. 2017, 7, 42531. [CrossRef] [PubMed]Yu, Y.-Q.; Zhao, F.; Guan, S.-M.; Chen, J. Antisense-Mediated Knockdown of Na(V)1.8, but Not Na(V)1.9, Generates Inhibitory Effects on Complete Freund’s Adjuvant-Induced Inflammatory Pain in Rat. PLoS ONE 2011, 6, e19865. [CrossRef]Park, C.-K. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus. Mediat. Inflamm. 2015, 2015, 275126. [CrossRef]Park, C.-K.; Lü, N.; Xu, Z.-Z.; Liu, T.; Serhan, C.N.; Ji, R.-R. Resolving TRPV1- and TNF-α-Mediated Spinal Cord Synaptic Plasticity and Inflammatory Pain with Neuroprotectin D1. J. Neurosci. 2011, 31, 15072–15085. [CrossRef]Park, C.-K.; Xu, Z.-Z.; Liu, T.; Lü, N.; Serhan, C.N.; Ji, R.-R. Resolvin D2 Is a Potent Endogenous Inhibitor for Transient Receptor Potential Subtype V1/A1, Inflammatory Pain, and Spinal Cord Synaptic Plasticity in Mice: Distinct Roles of Resolvin D1, D2, and E1. J. Neurosci. 2011, 31, 18433–18438. [CrossRef] [PubMed]Huang, J.; Burston, J.J.; Li, L.; Ashraf, S.; Mapp, P.I.; Bennett, A.J.; Ravipati, S.; Pousinis, P.; Barrett, D.A.; Scammell, B.E.; et al. Targeting the D Series Resolvin Receptor System for the Treatment of Osteoarthritis Pain. Arthritis Rheumatol. 2017, 69, 996–1008. [CrossRef]Bang, S.; Yoo, S.; Yang, T.J.; Cho, H.; Kim, Y.G.; Hwang, S.W. Resolvin D1 Attenuates Activation of Sensory Transient Receptor Potential Channels Leading to Multiple Anti-Nociception. Br. J. Pharmacol. 2010, 161, 707–720. [CrossRef] [PubMed]Macpherson, L.J.; Xiao, B.; Kwan, K.Y.; Petrus, M.J.; Dubin, A.E.; Hwang, S.; Cravatt, B.; Corey, D.P.; Patapoutian, A. An Ion Channel Essential for Sensing Chemical Damage. J. Neurosci. 2007, 27, 11412–11415. [CrossRef]Sommer, C.; Birklein, F. Fighting off Pain with Resolvins. Nat. Med. 2010, 16, 518–520. [CrossRef]Arita, M.; Bianchini, F.; Aliberti, J.; Sher, A.; Chiang, N.; Hong, S.; Yang, R.; Petasis, N.A.; Serhan, C.N. Stereochemical Assignment, Antiinflammatory Properties, and Receptor for the Omega-3 Lipid Mediator Resolvin E1. J. Exp. Med. 2005, 201, 713–722. [CrossRef] [PubMed]Meesawatsom, P.; Burston, J.; Hathway, G.; Bennett, A.; Chapman, V. Inhibitory Effects of Aspirin-Triggered Resolvin D1 on Spinal Nociceptive Processing in Rat Pain Models. J. Neuroinflamm. 2016, 13, 233. [CrossRef]Woolf, C.J.; Salter, M.W. Neuronal Plasticity: Increasing the Gain in Pain. Science 2000, 288, 1765–1768. [CrossRef]. Liu, X.J.; Gingrich, J.R.; Vargas-Caballero, M.; Dong, Y.N.; Sengar, A.; Beggs, S.; Wang, S.-H.; Ding, H.K.; Frankland, P.W.; Salter, M.W. Treatment of Inflammatory and Neuropathic Pain by Uncoupling Src from the NMDA Receptor Complex. Nat. Med. 2008, 14, 1325–1332. [CrossRef]Ren, K.; Hylden, J.L.K.; Williams, G.M.; Ruda, M.A.; Dubner, R. The Effects of a Non-Competitive NMDA Receptor Antagonist, MK-801, on Behavioral Hyperalgesia and Dorsal Horn Neuronal Activity in Rats with Unilateral Inflammation. Pain 1992, 50, 331–344. [CrossRef]Quan-Xin, F.; Fan, F.; Xiang-Ying, F.; Shu-Jun, L.; Shi-Qi, W.; Zhao-Xu, L.; Xu-Jie, Z.; Qing-Chuan, Z.; Wei, W. Resolvin D1 Reverses Chronic Pancreatitis-Induced Mechanical Allodynia, Phosphorylation of NMDA Receptors, and Cytokines Expression in the Thoracic Spinal Dorsal Horn. BMC Gastroenterol. 2012, 12, 148. [CrossRef]Oehler, B.; Mohammadi, M.; Perpina Viciano, C.; Hackel, D.; Hoffmann, C.; Brack, A.; Rittner, H.L. Peripheral Interaction of Resolvin D1 and E1 with Opioid Receptor Antagonists for Antinociception in Inflammatory Pain in Rats. Front. Mol. Neurosci. 2017, 10, 242. [CrossRef] [PubMed]Yaksh, T.L. Substance P Release from Knee Joint Afferent Terminals: Modulation by Opioids. Brain Res. 1988, 458, 319–324. [CrossRef]Beaudry, H.; Dubois, D.; Gendron, L. Activation of Spinal Mu- and Delta-Opioid Receptors Potently Inhibits Substance P Release Induced by Peripheral Noxious Stimuli. J. Neurosci. 2011, 31, 13068–13077. [CrossRef] [PubMed]Khasabova, I.A.; Harding-Rose, C.; Simone, D.A.; Seybold, V.S. Differential Effects of CB1 and Opioid Agonists on Two Populations of Adult Rat Dorsal Root Ganglion Neurons. J. Neurosci. 2004, 24, 1744–1753. [CrossRef]Jin, Y.H.; Nishioka, H.; Wakabayashi, K.; Fujita, T.; Yonehara, N. Effect of Morphine on the Release of Excitatory Amino Acids in the Rat Hind Instep: Pain Is Modulated by the Interaction between the Peripheral Opioid and Glutamate Systems. Neuroscience 2006, 138, 1329–1339. [CrossRef]Celik, M.Ö.; Labuz, D.; Henning, K.; Busch-Dienstfertig, M.; Gaveriaux-Ruff, C.; Kieffer, B.L.; Zimmer, A.; Machelska, H. Leukocyte Opioid Receptors Mediate Analgesia via Ca(2+)-Regulated Release of Opioid Peptides. Brain Behav. Immun. 2016, 57, 227–242. [CrossRef]Chuang, T.K.; Killam, K.F.; Chuang, L.F.; Kung, H.F.; Sheng, W.S.; Chao, C.C.; Yu, L.; Chuang, R.Y. Mu Opioid Receptor Gene Expression in Immune Cells. Biochem. Biophys. Res. Commun. 1995, 216, 922–930. [CrossRef] [PubMed]Toskulkao, T.; Pornchai, R.; Akkarapatumwong, V.; Vatanatunyakum, S.; Govitrapong, P. Alteration of Lymphocyte Opioid Receptors in Methadone Maintenance Subjects. Neurochem. Int. 2010, 56, 285–290. [CrossRef]Machelska, H.; Celik, M.Ö. Opioid Receptors in Immune and Glial Cells-Implications for Pain Control. Front. Immunol. 2020, 11, 300. [CrossRef] [PubMed]Luo, X.; Gu, Y.; Tao, X.; Serhan, C.N.; Ji, R.-R. Resolvin D5 Inhibits Neuropathic and Inflammatory Pain in Male but Not Female Mice: Distinct Actions of D-Series Resolvins in Chemotherapy-Induced Peripheral Neuropathy. Front. Pharmacol. 2019, 10, 745. [CrossRef]Krishnamoorthy, S.; Recchiuti, A.; Chiang, N.; Yacoubian, S.; Lee, C.-H.; Yang, R.; Petasis, N.A.; Serhan, C.N. Resolvin D1 Binds Human Phagocytes with Evidence for Proresolving Receptors. Proc. Natl. Acad. Sci. USA 2010, 107, 1660–1665. [CrossRef] [PubMed]Serhan, C.N.; Hong, S.; Gronert, K.; Colgan, S.P.; Devchand, P.R.; Mirick, G.; Moussignac, R.-L. Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment That Counter Proinflammation Signals. J. Exp. Med. 2002, 196, 1025–1037. [CrossRef] [PubMed]Qu, L.; Caterina, M.J. Accelerating the Reversal of Inflammatory Pain with NPD1 and Its Receptor GPR37. J. Clin. Investig. 2018, 128, 3246–3249. [CrossRef]Chen, O.; Donnelly, C.R.; Ji, R.-R. Regulation of Pain by Neuro-Immune Interactions between Macrophages and Nociceptor Sensory Neurons. Curr. Opin. Neurobiol. 2020, 62, 17–25. [CrossRef] [PubMed]Pannell, M.; Labuz, D.; Celik, M.Ö.; Keye, J.; Batra, A.; Siegmund, B.; Machelska, H. Adoptive Transfer of M2 Macrophages Reduces Neuropathic Pain via Opioid Peptides. J. Neuroinflamm. 2016, 13, 262. [CrossRef]Wang, J.C.-F.; Strichartz, G.R. Prevention of Chronic Post-Thoracotomy Pain in Rats by Intrathecal Resolvin D1 and D2: Effectiveness of Perioperative and Delayed Drug Delivery. J. Pain 2017, 18, 535–545. [CrossRef] [PubMed]Pamplona, F.A.; Ferreira, J.; de Lima, O.M.; Duarte, F.S.; Bento, A.F.; Forner, S.; Villarinho, J.G.; Bellocchio, L.; Wotjak, C.T.; Lerner, R.; et al. Anti-Inflammatory Lipoxin A4 Is an Endogenous Allosteric Enhancer of CB1 Cannabinoid Receptor. Proc. Natl. Acad. Sci. USA 2012, 109, 21134–21139. [CrossRef] [PubMed]Zhang, H.; He, S.; Hu, Y.; Zheng, H. Antagonism of Cannabinoid Receptor 1 Attenuates the Anti-Inflammatory Effects of Electroacupuncture in a Rodent Model of Migraine. Acupunct. Med. 2016, 34, 463–470. [CrossRef]Xu, Z.-Z.; Berta, T.; Ji, R.-R. Resolvin E1 Inhibits Neuropathic Pain and Spinal Cord Microglial Activation Following Peripheral Nerve Injury. J. Neuroimmune Pharmacol. 2013, 8, 37–41. [CrossRef] [PubMed]Hernangómez, M.; Klusáková, I.; Joukal, M.; Hradilová-Svíženská, I.; Guaza, C.; Dubový, P. CD200R1 Agonist Attenuates Glial Activation, Inflammatory Reactions, and Hypersensitivity Immediately after Its Intrathecal Application in a Rat Neuropathic Pain Model. J. Neuroinflamm. 2016, 13, 43. [CrossRef] [PubMed]Gao, Y.-J.; Ji, R.-R. Activation of JNK Pathway in Persistent Pain. Neurosci. Lett. 2008, 437, 180–183. [CrossRef]Tsuda, M.; Inoue, K.; Salter, M.W. Neuropathic Pain and Spinal Microglia: A Big Problem from Molecules in “Small” Glia. Trends Neurosci. 2005, 28, 101–107. [CrossRef]Svensson, C.I.; Zattoni, M.; Serhan, C.N. Lipoxins and Aspirin-Triggered Lipoxin Inhibit Inflammatory Pain Processing. J. Exp. Med. 2007, 204, 245–252. [CrossRef]Miao, G.-S.; Liu, Z.-H.; Wei, S.-X.; Luo, J.-G.; Fu, Z.-J.; Sun, T. Lipoxin A4 Attenuates Radicular Pain Possibly by Inhibiting Spinal ERK, JNK and NF-KB/P65 and Cytokine Signals, but Not P38, in a Rat Model of Non-Compressive Lumbar Disc Herniation. Neuroscience 2015, 300, 10–18. [CrossRef]Liu, J.; Peng, L.; Li, J. The Lipoxin A4 Receptor Agonist BML-111 Alleviates Inflammatory Injury and Oxidative Stress in Spinal Cord Injury. Med. Sci. Monit. 2020, 26, e919883. [CrossRef] [PubMed]Ji, R.-R.; Suter, M.R. P38 MAPK, Microglial Signaling, and Neuropathic Pain. Mol. Pain 2007, 3, 33. [CrossRef] [PubMed]Diamond, P.; Doran, P.; Brady, H.R.; McGinty, A. Suppressors of Cytokine Signalling (SOCS): Putative Modulators of Cytokine Bioactivity in Health and Disease. J. Nephrol. 2000, 13, 9–14Hu, S.; Mao-Ying, Q.-L.; Wang, J.; Wang, Z.-F.; Mi, W.-L.; Wang, X.-W.; Jiang, J.-W.; Huang, Y.-L.; Wu, G.-C.; Wang, Y.-Q. Lipoxins and Aspirin-Triggered Lipoxin Alleviate Bone Cancer Pain in Association with Suppressing Expression of Spinal Proinflammatory Cytokines. J. Neuroinflamm. 2012, 9, 278. [CrossRef]Zhang, L.-Y.; Liu, Z.-H.; Zhu, Q.; Wen, S.; Yang, C.-X.; Fu, Z.-J.; Sun, T. Resolvin D2 Relieving Radicular Pain Is Associated with Regulation of Inflammatory Mediators, Akt/GSK-3β Signal Pathway and GPR18. Neurochem. Res. 2018, 43, 2384–2392. [CrossRef] [PubMed]Xu, Z.-Z.; Liu, X.-J.; Berta, T.; Park, C.-K.; Lü, N.; Serhan, C.N.; Ji, R.-R. Neuroprotectin/Protectin D1 Protects against Neuropathic Pain in Mice after Nerve Trauma. Ann. Neurol. 2013, 74, 490–495. [CrossRef]Gao, J.; Tang, C.; Tai, L.W.; Ouyang, Y.; Li, N.; Hu, Z.; Chen, X. Pro-Resolving Mediator Maresin 1 Ameliorates Pain Hypersensitivity in a Rat Spinal Nerve Ligation Model of Neuropathic Pain. J. Pain Res. 2018, 11, 1511–1519. [CrossRef]Fukumoto, M.; Takeuchi, T.; Koubayashi, E.; Harada, S.; Ota, K.; Kojima, Y.; Higuchi, K. Induction of Brain-Derived Neurotrophic Factor in Enteric Glial Cells Stimulated by Interleukin-1β via a c-Jun N-Terminal Kinase Pathway. J. Clin. Biochem. Nutr. 2020, 66, 103–109. [CrossRef]Yu, Y.-B.; Zuo, X.-L.; Zhao, Q.-J.; Chen, F.-X.; Yang, J.; Dong, Y.-Y.; Wang, P.; Li, Y.-Q. Brain-Derived Neurotrophic Factor Contributes to Abdominal Pain in Irritable Bowel Syndrome. Gut 2012, 61, 685–694. [CrossRef]Reischer, G.; Heinke, B.; Sandkühler, J. Interferon-γ Facilitates the Synaptic Transmission between Primary Afferent C-Fibres and Lamina I Neurons in the Rat Spinal Dorsal Horn via Microglia Activation. Mol. Pain 2020, 16, 1744806920917249. [CrossRef] [PubMed]Coull, J.A.M.; Beggs, S.; Boudreau, D.; Boivin, D.; Tsuda, M.; Inoue, K.; Gravel, C.; Salter, M.W.; De Koninck, Y. BDNF from Microglia Causes the Shift in Neuronal Anion Gradient Underlying Neuropathic Pain. Nature 2005, 438, 1017–1021. [CrossRef] [PubMed]Kim, D.; Kim, M.A.; Cho, I.-H.; Kim, M.S.; Lee, S.; Jo, E.-K.; Choi, S.-Y.; Park, K.; Kim, J.S.; Akira, S.; et al. A Critical Role of Toll-like Receptor 2 in Nerve Injury-Induced Spinal Cord Glial Cell Activation and Pain Hypersensitivity. J. Biol. Chem. 2007, 282, 14975–14983. [CrossRef]Zhuang, Z.-Y.; Kawasaki, Y.; Tan, P.-H.; Wen, Y.-R.; Huang, J.; Ji, R.-R. Role of the CX3CR1/P38 MAPK Pathway in Spinal Microglia for the Development of Neuropathic Pain Following Nerve Injury-Induced Cleavage of Fractalkine. Brain Behav. Immun. 2007, 21, 642–651. [CrossRef]Wu, L.; Liu, Z.J.; Miao, S.; Zou, L.B.; Cai, L.; Wu, P.; Ye, D.Y.; Wu, Q.; Li, H.H. Lipoxin A4 Ameliorates Cerebral Ischaemia/Reperfusion Injury through Upregulation of Nuclear Factor Erythroid 2-Related Factor 2. Neurol. Res. 2013, 35, 968–975. [CrossRef]Wu, Y.; Zhai, H.; Wang, Y.; Li, L.; Wu, J.; Wang, F.; Sun, S.; Yao, S.; Shang, Y. Aspirin-Triggered Lipoxin A4 Attenuates Lipopolysaccharide-Induced Intracellular ROS in BV2 Microglia Cells by Inhibiting the Function of NADPH Oxidase. Neurochem. Res. 2012, 37, 1690–1696. [CrossRef] [PubMed]Arita, M.; Ohira, T.; Sun, Y.-P.; Elangovan, S.; Chiang, N.; Serhan, C.N. Resolvin E1 Selectively Interacts with Leukotriene B4 Receptor BLT1 and ChemR23 to Regulate Inflammation. J. Immunol. 2007, 178, 3912–3917. [CrossRef]Liu, Z.-Q.; Zhang, H.-B.; Wang, J.; Xia, L.-J.; Zhang, W. Lipoxin A4 Ameliorates Ischemia/Reperfusion Induced Spinal Cord Injury in Rabbit Model. Int. J. Clin. Exp. Med. 2015, 8, 12826–12833Leuti, A.; Maccarrone, M.; Chiurchiù, V. Proresolving Lipid Mediators: Endogenous Modulators of Oxidative Stress. Oxid. Med. Cell. Longev. 2019, 2019, 8107265. [CrossRef]Tsujino, H.; Kondo, E.; Fukuoka, T.; Dai, Y.; Tokunaga, A.; Miki, K.; Yonenobu, K.; Ochi, T.; Noguchi, K. Activating Transcription Factor 3 (ATF3) Induction by Axotomy in Sensory and Motoneurons: A Novel Neuronal Marker of Nerve Injury. Mol. Cell. Neurosci. 2000, 15, 170–182. [CrossRef]Ohuchi, K.; Ono, Y.; Joho, M.; Tsuruma, K.; Ogami, S.; Yamane, S.; Funato, M.; Kaneko, H.; Nakamura, S.; Hara, H.; et al. A Docosahexaenoic Acid-Derived Pro-Resolving Agent, Maresin 1, Protects Motor Neuron Cells Death. Neurochem. Res. 2018, 43, 1413–1423. [CrossRef] [PubMed]Serhan, C.N.; Chiang, N.; Dalli, J. The Resolution Code of Acute Inflammation: Novel pro-Resolving Lipid Mediators in Resolution. Semin. Immunol. 2015, 27, 200–215. [CrossRef] [PubMed]Paragomi, P.; Rahimian, R.; Kazemi, M.H.; Gharedaghi, M.H.; Khalifeh-Soltani, A.; Azary, S.; Javidan, A.N.; Moradi, K.; Sakuma, S.; Dehpour, A.R. Antinociceptive and Antidiarrheal Effects of Pioglitazone in a Rat Model of Diarrhoea-Predominant Irritable Bowel Syndrome: Role of Nitric Oxide. Clin. Exp. Pharmacol. Physiol. 2014, 41, 118–126. [CrossRef] [PubMed]Piovezan, A.P.; Batisti, A.P.; Benevides, M.L.A.C.S.; Turnes, B.L.; Martins, D.F.; Kanis, L.; Duarte, E.C.W.; Cavalheiro, A.J.; Bueno, P.C.P.; Seed, M.P.; et al. Hydroalcoholic Crude Extract of Casearia Sylvestris Sw. Reduces Chronic Post-Ischemic Pain by Activation of pro-Resolving Pathways. J. Ethnopharmacol. 2017, 204, 179–188. [CrossRef] [PubMed]Abdelmoaty, S.; Wigerblad, G.; Bas, D.B.; Codeluppi, S.; Fernandez-Zafra, T.; El-Awady, E.-S.; Moustafa, Y.; Abdelhamid, A.E.S.; Brodin, E.; Svensson, C.I. Spinal Actions of Lipoxin A4 and 17(R)-Resolvin D1 Attenuate Inflammation-Induced Mechanical Hypersensitivity and Spinal TNF Release. PLoS ONE 2013, 8, e75543. [CrossRef]Lu, T.; Wu, X.; Wei, N.; Liu, X.; Zhou, Y.; Shang, C.; Duan, Y.; Dong, Y. Lipoxin A4 Protects against Spinal Cord Injury via Regulating Akt/Nuclear Factor (Erythroid-Derived 2)-like 2/Heme Oxygenase-1 Signaling. Biomed. Pharmacother. 2018, 97, 905–910. [CrossRef] [PubMed]Wang, Z.F.; Li, Q.; Liu, S.B.; Mi, W.-L.; Hu, S.; Zhao, J.; Tian, Y.; Mao-Ying, Q.L.; Jiang, J.W.; Ma, H.J.; et al. Aspirin-Triggered Lipoxin A4 Attenuates Mechanical Allodynia in Association with Inhibiting Spinal JAK2/STAT3 Signaling in Neuropathic Pain in Rats. Neuroscience 2014, 273, 65–78. [CrossRef]Sun, T.; Yu, E.; Yu, L.; Luo, J.; Li, H.; Fu, Z. LipoxinA(4) Induced Antinociception and Decreased Expression of NF-KB and pro-Inflammatory Cytokines after Chronic Dorsal Root Ganglia Compression in Rats. Eur. J. Pain 2012, 16, 18–27. [CrossRef]Tian, Y.; Liu, M.; Mao-Ying, Q.-L.; Liu, H.; Wang, Z.-F.; Zhang, M.-T.; Wang, J.; Li, Q.; Liu, S.-B.; Mi, W.-L.; et al. Early Single Aspirin-Triggered Lipoxin Blocked Morphine Anti-Nociception Tolerance through Inhibiting NALP1 Inflammasome: Involvement of PI3k/Akt Signaling Pathway. Brain Behav. Immun. 2015, 50, 63–77. [CrossRef]Huang, L.; Wang, C.-F.; Serhan, C.N.; Strichartz, G. Enduring Prevention and Transient Reduction of Postoperative Pain by Intrathecal Resolvin D1. Pain 2011, 152, 557–565. [CrossRef] [PubMed]. Liu, Z.; Miao, G.; Wang, J.; Yang, C.; Fu, Z.; Sun, T. Resolvin D1 Inhibits Mechanical Hypersensitivity in Sciatica by Modulating the Expression of Nuclear Factor-KB, Phospho-Extracellular Signal-Regulated Kinase, and Pro- and Antiinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion. Anesthesiology 2016, 124, 934–944. [CrossRef]Zhang, L.; Terrando, N.; Xu, Z.-Z.; Bang, S.; Jordt, S.-E.; Maixner, W.; Serhan, C.N.; Ji, R.-R. Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-Operative Pain after Bone Fracture in Mice. Front. Pharmacol. 2018, 9, 412. [CrossRef]Klein, C.P.; Sperotto, N.D.M.; Maciel, I.S.; Leite, C.E.; Souza, A.H.; Campos, M.M. Effects of D-Series Resolvins on Behavioral and Neurochemical Changes in a Fibromyalgia-like Model in Mice. Neuropharmacology 2014, 86, 57–66. [CrossRef] [PubMed]Fonseca, F.C.; Orlando, R.M.; Turchetti-Maia, R.M.; de Francischi, J.N. Comparative Effects of the Ω3 Polyunsaturated Fatty Acid Derivatives Resolvins E1 and D1 and Protectin DX in Models of Inflammation and Pain. J. Inflamm. Res. 2017, 10, 119–133. [CrossRef]Barden, A.; Mas, E.; Croft, K.D.; Phillips, M.; Mori, T.A. Short-Term n-3 Fatty Acid Supplementation but Not Aspirin Increases Plasma Proresolving Mediators of Inflammation. J. Lipid Res. 2014, 55, 2401–2407. [CrossRef]Tjonahen, E.; Oh, S.F.; Siegelman, J.; Elangovan, S.; Percarpio, K.B.; Hong, S.; Arita, M.; Serhan, C.N. Resolvin E2: Identification and Anti-Inflammatory Actions: Pivotal Role of Human 5-Lipoxygenase in Resolvin E Series Biosynthesis. Chem. Biol. 2006, 13, 1193–1202. [CrossRef] [PubMed]Isobe, Y.; Arita, M.; Iwamoto, R.; Urabe, D.; Todoroki, H.; Masuda, K.; Inoue, M.; Arai, H. Stereochemical Assignment and Anti-Inflammatory Properties of the Omega-3 Lipid Mediator Resolvin E3. J. Biochem. 2013, 153, 355–360. [CrossRef] [PubMed]A.T. Resolve SARL. A Multicenter, Double-Masked, Parallel-Group, Vehicle-Controlled Study to Assess the Efficacy and Safety of RX-10045 Nanomicellar Ophthalmic Solution for Treatment of Ocular Inflammation and Pain in Subjects Undergoing Cataract Surgery. 2019. Available online: clinicaltrials.gov (accessed on 10 July 2021).Ramsden, C.E.; Faurot, K.R.; Zamora, D.; Palsson, O.S.; MacIntosh, B.A.; Gaylord, S.; Taha, A.Y.; Rapoport, S.I.; Hibbeln, J.R.; Davis, J.M.; et al. Targeted Alterations in Dietary N-3 and n-6 Fatty Acids Improve Life Functioning and Reduce Psychological Distress among Patients with Chronic Headache: A Secondary Analysis of a Randomized Trial. Pain 2015, 156, 587–596. [CrossRef]Tajmirriahi, M.; Sohelipour, M.; Basiri, K.; Shaygannejad, V.; Ghorbani, A.; Saadatnia, M. The Effects of Sodium Valproate with Fish Oil Supplementation or Alone in Migraine Prevention: A Randomized Single-Blind Clinical Trial. Iran. J. Neurol. 2012, 11, 21–24.Caturla, N.; Funes, L.; Pérez-Fons, L.; Micol, V. A Randomized, Double-Blinded, Placebo-Controlled Study of the Effect of a Combination of Lemon Verbena Extract and Fish Oil Omega-3 Fatty Acid on Joint Management. J. Altern. Complement. Med. 2011, 17, 1051–1063. [CrossRef]Tomer, A.; Kasey, S.; Connor, W.E.; Clark, S.; Harker, L.A.; Eckman, J.R. Reduction of Pain Episodes and Prothrombotic Activity in Sickle Cell Disease by Dietary N-3 Fatty Acids. Thromb. Haemost. 2001, 85, 966–974. [CrossRef]Durán, A.M.; Salto, L.M.; Câmara, J.; Basu, A.; Paquien, I.; Beeson, W.L.; Firek, A.; Cordero-MacIntyre, Z.; De León, M. Effects of Omega-3 Polyunsaturated Fatty-Acid Supplementation on Neuropathic Pain Symptoms and Sphingosine Levels in Mexican-Americans with Type 2 Diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 109–120. [CrossRef]Barden, A.E.; Moghaddami, M.; Mas, E.; Phillips, M.; Cleland, L.G.; Mori, T.A. Specialised Pro-Resolving Mediators of Inflammation in Inflammatory Arthritis. Prostaglandins Leukot. Essent. Fatty Acids 2016, 107, 24–29. [CrossRef]Kremer, J.M.; Lawrence, D.A.; Jubiz, W.; DiGiacomo, R.; Rynes, R.; Bartholomew, L.E.; Sherman, M. Dietary Fish Oil and Olive Oil Supplementation in Patients with Rheumatoid Arthritis. Clinical and Immunologic Effects. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1990, 33, 810–820. [CrossRef] [PubMed]Geusens, P.; Wouters, C.; Nijs, J.; Jiang, Y.; Dequeker, J. Long-Term Effect of Omega-3 Fatty Acid Supplementation in Active Rheumatoid Arthritis. A 12-Month, Double-Blind, Controlled Study. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1994, 37, 824–829. [CrossRef] [PubMed]Tulleken, J.E.; Limburg, P.C.; Muskiet, F.A.; van Rijswijk, M.H. Vitamin E Status during Dietary Fish Oil Supplementation in Rheumatoid Arthritis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1990, 33, 1416–1419. [CrossRef] [PubMed]Galarraga, B.; Khan, F.; Kumar, P.; Pullar, T.; Belch, J.J.F. C-Reactive Protein: The Underlying Cause of Microvascular Dysfunction in Rheumatoid Arthritis. Rheumatology 2008, 47, 1780–1784. [CrossRef] [PubMed]Lamon-Fava, S.; So, J.; Mischoulon, D.; Ziegler, T.R.; Dunlop, B.W.; Kinkead, B.; Schettler, P.J.; Nierenberg, A.A.; Felger, J.C.; Maddipati, K.R.; et al. Dose- and Time-Dependent Increase in Circulating Anti-Inflammatory and pro-Resolving Lipid Mediators Following Eicosapentaenoic Acid Supplementation in Patients with Major Depressive Disorder and Chronic Inflammation. Prostaglandins Leukot. Essent. Fatty Acids 2021, 164, 102219. [CrossRef] [PubMed]Abdelhalim, S.M.N.S. Comparative Effectiveness of the Different Treatment Modalities for Management of Vaso-Occlusive Painful Crisis in Pediatric Sickle Cell Disease. 2021. Available online: clinicaltrials.gov (accessed on 10 July 2021).Kenney, K. Targeted Alteration in Omega-3 and Omega-6 Fatty Acids for Post-Traumatic Headache (Nutrition for PTH). 2018. Available online: clinicaltrials.gov (accessed on 10 July 2021)Universidade do Porto. Effects of an Anti-Inflammatory Nutritional Intervention in Disease Assessment Parameters, Inflammatory Markers, and Quality of Life of Patients with Fibromyalgia. 2020. Available online: clinicaltrials.gov (accessed on 10 July 2021).Costenbader, K.H. Vitamin D and Fish Oil for Autoimmune Disease, Inflammation and Knee Pain. 2021. Available online: clinicaltrials.gov (accessed on 10 July 2021)University of North Carolina. Chapel Hill Pilot, Double-Blind, Randomized Controlled, Multi-Center Study of the Effects of Fish Oil and Vitamin D in the Prevention of Chronic Pain Following Major Thermal Burn Injury. 2020. Available online: clinicaltrials.gov (accessed on 10 July 2021)Swisse Wellness Pty Ltd. A Randomised, Double-Blind, Placebo Controlled Study to Investigate the Effect on Knee Pain Reduction and Safety of Swisse High Strength Deep Sea Krill Oil (Superba BOOST) in Adults with Mild to Moderate Osteoarthritis of the Knee. 2020. Available online: clinicaltrials.gov (accessed on 10 July 2021).De La Cruz, V.J.A.; Dos Santos, F.; Dyzinger, W.; Herzog, S. Medicina Del Estilo de Vida: Trabajando Juntos Para Revertir La Epidemia de Las Enfermedades Crónicas En Latinoamérica. Cienc. Innovación Salud 2017, 4, 1–7. [CrossRef]Hern, O.; Saumeth, K.T.; Cabrera, J.L.; Pinz, M. Consumos y Costos de Medicamentos: Herramienta para la Gestión de Suministro del Servicio Farmacéutico. Cienc. Innovación Salud 2015, 3, 45–52. [CrossRef]Freire, L.F.L.; Chingo, D.J.A.; Saldarriaga, L.C.Z.; Mera, L.M.I.; Escalante, V.C.G.; Villacres, A.X.Z.; Sanguil, A.T.A.; Bucheli, F.J.J.; Velasco, S.J.S. Alternativas emergentes en la farmacoterapia de la neuralgia del trigémino. AVFT—Arch. Venez. Farmacol. Ter. 2019, 38, 34–39.Correa, M.D.; López, M.R. Activación alternativa del macrófago: La diversidad en las respuestas de una célula de la inmunidad innata ante la complejidad de los eventos de su ambiente. Inmunologia 2007, 26, 73–86. [CrossRef]ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1123817https://bonga.unisimon.edu.co/bitstreams/87e61439-077b-44c5-aa8b-12af0dcb947a/download84cde137faa4669d14b92e30f01cf381MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/22264a68-46da-49e7-b95a-deb238490065/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/59330530-9b7a-4ed8-8e75-aa24e375d220/download733bec43a0bf5ade4d97db708e29b185MD53TEXT2021_MDPI_Specialized_Pro-Resolving_Lipid_Mediators.pdf.txt2021_MDPI_Specialized_Pro-Resolving_Lipid_Mediators.pdf.txtExtracted texttext/plain89492https://bonga.unisimon.edu.co/bitstreams/9c63a62d-c49d-44ef-8cd1-1c9920983d66/download02f3fb8a11d50e9c7da0c73596eea805MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain100601https://bonga.unisimon.edu.co/bitstreams/659273a9-e4db-4466-8f4b-ac7da3513d33/downloade0a75ae7277e8f1effb86dd1626c595dMD56THUMBNAIL2021_MDPI_Specialized_Pro-Resolving_Lipid_Mediators.pdf.jpg2021_MDPI_Specialized_Pro-Resolving_Lipid_Mediators.pdf.jpgGenerated Thumbnailimage/jpeg22900https://bonga.unisimon.edu.co/bitstreams/38a923b0-1082-48aa-9294-79ed47322486/downloada25aa72f1d745b4ecc119a3d85cf07afMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5773https://bonga.unisimon.edu.co/bitstreams/4ca85e77-2c7d-46c0-a132-b84e1a2cd946/download5a0b7d6ec572209032a38909520506ddMD5720.500.12442/8636oai:bonga.unisimon.edu.co:20.500.12442/86362024-08-14 21:52:41.282http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u