Integrability of stochastic birth-death processes via differential galois theory

Stochastic birth-death processes are described as continuous-time Markov processes in models of population dynamics. A system of in nite, coupled ordinary diferential equations (the so- called master equation) describes the time-dependence of the probability of each system state. Using a generating...

Full description

Autores:
Acosta-Humánez, Primitivo B.
Capitán, José A.
Morales-Ruiz, Juan J.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/6845
Acceso en línea:
https://hdl.handle.net/20.500.12442/6845
https://doi.org/10.1051/mmnp/2020005
Palabra clave:
Diferential Galois theory
Stochastic processes
Population dynamics
Laplace transform
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_4376893ddb29eabac22fd33c52871bcb
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/6845
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Integrability of stochastic birth-death processes via differential galois theory
title Integrability of stochastic birth-death processes via differential galois theory
spellingShingle Integrability of stochastic birth-death processes via differential galois theory
Diferential Galois theory
Stochastic processes
Population dynamics
Laplace transform
title_short Integrability of stochastic birth-death processes via differential galois theory
title_full Integrability of stochastic birth-death processes via differential galois theory
title_fullStr Integrability of stochastic birth-death processes via differential galois theory
title_full_unstemmed Integrability of stochastic birth-death processes via differential galois theory
title_sort Integrability of stochastic birth-death processes via differential galois theory
dc.creator.fl_str_mv Acosta-Humánez, Primitivo B.
Capitán, José A.
Morales-Ruiz, Juan J.
dc.contributor.author.none.fl_str_mv Acosta-Humánez, Primitivo B.
Capitán, José A.
Morales-Ruiz, Juan J.
dc.subject.eng.fl_str_mv Diferential Galois theory
Stochastic processes
Population dynamics
Laplace transform
topic Diferential Galois theory
Stochastic processes
Population dynamics
Laplace transform
description Stochastic birth-death processes are described as continuous-time Markov processes in models of population dynamics. A system of in nite, coupled ordinary diferential equations (the so- called master equation) describes the time-dependence of the probability of each system state. Using a generating function, the master equation can be transformed into a partial diferential equation. In this contribution we analyze the integrability of two types of stochastic birth-death processes (with polynomial birth and death rates) using standard diferential Galois theory.We discuss the integrability of the PDE via a Laplace transform acting over the temporal variable. We show that the PDE is not integrable except for the case in which rates are linear functions of the number of individuals.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-04T17:56:50Z
dc.date.available.none.fl_str_mv 2020-12-04T17:56:50Z
dc.date.issued.none.fl_str_mv 2020
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.issn.none.fl_str_mv 17606101
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/6845
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1051/mmnp/2020005
identifier_str_mv 17606101
url https://hdl.handle.net/20.500.12442/6845
https://doi.org/10.1051/mmnp/2020005
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv pdf
dc.publisher.eng.fl_str_mv EDP Sciences
dc.source.eng.fl_str_mv Mathematical Modelling of Natural Phenomena. Math. Model. Nat. Phenom.
dc.source.none.fl_str_mv Vol. 15, No. 70, (2020)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/c55888cc-0c78-4ee6-be87-3bbc61edb3b4/download
https://bonga.unisimon.edu.co/bitstreams/84320491-283c-4f3a-9b3f-b718d2a541b7/download
https://bonga.unisimon.edu.co/bitstreams/f235c949-7127-47c8-9b03-936d5022edc8/download
https://bonga.unisimon.edu.co/bitstreams/7313a32b-8ad9-433d-96d3-39713a8c1fa7/download
https://bonga.unisimon.edu.co/bitstreams/60e22ee3-b38e-4063-8bd1-6856b26b7728/download
https://bonga.unisimon.edu.co/bitstreams/383414ba-66c4-4bfe-81bf-4ea4b9b9def4/download
https://bonga.unisimon.edu.co/bitstreams/b1c5cd60-db88-4687-9a9b-e978e787aa86/download
bitstream.checksum.fl_str_mv 41b1dabac66b1f3d968c54bfa05d2ae0
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
5ea4c47db2051a92502e3a901df5d601
17ad80fe70ce1ba0ecfb970586ed5a2b
0f489c80b520855219382592d7552706
f8044a8fb7def9ed2e78edfe4e3a7a1f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076095955206144
spelling Acosta-Humánez, Primitivo B.9439add6-3451-4b3f-b187-8b8ba4133fcdCapitán, José A.9aa6efbd-67dd-4270-a049-737ad507c8ecMorales-Ruiz, Juan J.b1dc3bcd-f9eb-4064-91b4-5ac60fd2a7512020-12-04T17:56:50Z2020-12-04T17:56:50Z202017606101https://hdl.handle.net/20.500.12442/6845https://doi.org/10.1051/mmnp/2020005Stochastic birth-death processes are described as continuous-time Markov processes in models of population dynamics. A system of in nite, coupled ordinary diferential equations (the so- called master equation) describes the time-dependence of the probability of each system state. Using a generating function, the master equation can be transformed into a partial diferential equation. In this contribution we analyze the integrability of two types of stochastic birth-death processes (with polynomial birth and death rates) using standard diferential Galois theory.We discuss the integrability of the PDE via a Laplace transform acting over the temporal variable. We show that the PDE is not integrable except for the case in which rates are linear functions of the number of individuals.pdfengEDP SciencesAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mathematical Modelling of Natural Phenomena. Math. Model. Nat. Phenom.Vol. 15, No. 70, (2020)Diferential Galois theoryStochastic processesPopulation dynamicsLaplace transformIntegrability of stochastic birth-death processes via differential galois theoryinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1M. Abramowitz and I.A. Stegun, Handbook of mathematical functions: with formulas, graphs and mathematical tables. Dover Publications, New York (1965).P. Acosta-Humánez and D. Blázquez-Sanz, Non-integrability of some hamiltonians with rational potentials. Discr. Continu. Dyn. Syst. B 10 (2008) 265{293.P. Acosta-Humánez, J.T. Lázaro, J.J. Morales-Ruiz and C. Pantazi, Differential Galois theory and non-integrability of planar polynomial vector elds. J. Differ. Equ. 264 (2018) 7183{7212.P. Acosta-Humánez, J.J. Morales-Ruiz and J.-A. Weil, Galoisian approach to integrability of Schr odinger equation. Rep. Math. Phys. 67 (2011) 305{374.D. Alonso, R.S. Etienne and A.J. McKane, The merits of neutral theory. Trends Ecol. Evol. 21 (2006) 451{457.D. Alonso, A.J. McKane and M. Pascual, Stochastic ampli cation in epidemics. J. R. Soc. Interface 4 (2007) 575{582.J.A. Capitán, S. Cuenda and D. Alonso, How similar can co-occurring species be in the presence of competition and ecological drift? J. R. Soc. Interface 12 (2015) 20150604.J.A. Capitán, S. Cuenda and D. Alonso, Stochastic competitive exclusion leads to a cascade of species extinctions. J. Theor. Biol. 419 (2017) 137{151.T. Crespo and Z. Hajto, Algebraic Groups and Differential Galois Theory. In Vol. 122 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island (2011).W. Feller, Die grundlagen der volterrschen theorie des kampfes ums dasein in wahrscheinlichkeitstheoretischer behandlung. Acta Biometrica 5 (1939) 11{40.B. Haegeman, M. Loreau, A mathematical synthesis of niche and neutral theories in community ecology. J. Theor. Biol. 269 (2011) 150{165.S.P. Hubbell, The Uni ed Theory of Biodiversity and Biogeography. Princeton University Press, Princeton (2001).I. Kaplansky, An introduction to differential algebra. Hermann, Paris (1957).S. Karlin and H.M. Taylor, A rst course in stochastic processes. Academic Press, New York (1975).D.G. Kendall, On the generalized birth-and-death process. Ann. Math. Stat. 19 (1948) 1{15.E. Kolchin, Differential Algebra and Algebraic Groups. Academic Press, New York (1973).J.J. Kovacic, An algorithm for solving second order linear homogeneous differential equations. J. Symbolic Comput. 2 (1986) 3{43.A.G. McKendrick and M. Kesava, The rate of multiplication of micro-organisms: A mathematical study. Proc. R. Soc. Edinburgh 31 (1912) 649{653.J.J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems. In Vol. 179 of Progress in Mathematics series. Birkh ausser, Basel (1999).R.M. Nisbet and W.C.S. Gurney, Modelling uctuating populations. The Blackburn Press, Caldwell, New Jersey (1982).A.S. Novozhilov, G.P. Karev and E.V. Koonin, Biological applications of the theory of birth-and-death processes. Brief. Bioinform. 7 (2006) 70{85.A. Ronveaux, Heun's differential equations. Oxford University Press, Oxford (1995).G.U. Yule, A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 213 (1924) 21{87.M. van der Put and M. Singer, Galois theory of linear differential equations. In Vol. 328 of Grundlehren der mathematischen Wissenschaften. Springer Verlag, New York (2003).T.L. Saati, Elements of queuing theory. McGraw-Hill, New York (1961).V. Volterra, Variazioni e uttuazioni del numero d'individui in specie animali conviventi. Mem. Acad. Naz. Lincei 2 (1926) 31{113.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf551790https://bonga.unisimon.edu.co/bitstreams/c55888cc-0c78-4ee6-be87-3bbc61edb3b4/download41b1dabac66b1f3d968c54bfa05d2ae0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/84320491-283c-4f3a-9b3f-b718d2a541b7/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/f235c949-7127-47c8-9b03-936d5022edc8/download733bec43a0bf5ade4d97db708e29b185MD53TEXTIntegrability of stochastic birth-death processes.pdf.txtIntegrability of stochastic birth-death processes.pdf.txtExtracted texttext/plain60061https://bonga.unisimon.edu.co/bitstreams/7313a32b-8ad9-433d-96d3-39713a8c1fa7/download5ea4c47db2051a92502e3a901df5d601MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain61588https://bonga.unisimon.edu.co/bitstreams/60e22ee3-b38e-4063-8bd1-6856b26b7728/download17ad80fe70ce1ba0ecfb970586ed5a2bMD56THUMBNAILIntegrability of stochastic birth-death processes.pdf.jpgIntegrability of stochastic birth-death processes.pdf.jpgGenerated Thumbnailimage/jpeg1641https://bonga.unisimon.edu.co/bitstreams/383414ba-66c4-4bfe-81bf-4ea4b9b9def4/download0f489c80b520855219382592d7552706MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg4909https://bonga.unisimon.edu.co/bitstreams/b1c5cd60-db88-4687-9a9b-e978e787aa86/downloadf8044a8fb7def9ed2e78edfe4e3a7a1fMD5720.500.12442/6845oai:bonga.unisimon.edu.co:20.500.12442/68452024-08-14 21:52:00.921http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u