Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field

This work contrasts numerical methods with algebraic methods. These methods are applied to solve a three dimensional linear differential system with skew symmetric matrices defined in a non- constant differential field. Algorithms and methods of Differential Galois Theory, are used to provide an alg...

Full description

Autores:
Acosta-Humánez, Primitivo Belén
Jiménez, M.
Ospino, Jorge
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
spa
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1935
Acceso en línea:
http://hdl.handle.net/20.500.12442/1935
Palabra clave:
Differential Galois theory
Methods from Runge - Kutta family
Liouvillians solutions
Differential system of equations
Skew symmetric matrices
Non-constant differential field
Teoría de Galois diferencial
Métodos de la familia de Runge - Kutta
Soluciones Liouvillianas
Sistemas de ecuaciones diferenciales
Matrices antisimétricas
Cuerpo diferencial no constante
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_4048e6025ee45934233e412608f09f49
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1935
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field
title Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field
spellingShingle Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field
Differential Galois theory
Methods from Runge - Kutta family
Liouvillians solutions
Differential system of equations
Skew symmetric matrices
Non-constant differential field
Teoría de Galois diferencial
Métodos de la familia de Runge - Kutta
Soluciones Liouvillianas
Sistemas de ecuaciones diferenciales
Matrices antisimétricas
Cuerpo diferencial no constante
title_short Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field
title_full Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field
title_fullStr Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field
title_full_unstemmed Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field
title_sort Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field
dc.creator.fl_str_mv Acosta-Humánez, Primitivo Belén
Jiménez, M.
Ospino, Jorge
dc.contributor.author.none.fl_str_mv Acosta-Humánez, Primitivo Belén
Jiménez, M.
Ospino, Jorge
dc.subject.eng.fl_str_mv Differential Galois theory
Methods from Runge - Kutta family
Liouvillians solutions
Differential system of equations
Skew symmetric matrices
Non-constant differential field
topic Differential Galois theory
Methods from Runge - Kutta family
Liouvillians solutions
Differential system of equations
Skew symmetric matrices
Non-constant differential field
Teoría de Galois diferencial
Métodos de la familia de Runge - Kutta
Soluciones Liouvillianas
Sistemas de ecuaciones diferenciales
Matrices antisimétricas
Cuerpo diferencial no constante
dc.subject.spa.fl_str_mv Teoría de Galois diferencial
Métodos de la familia de Runge - Kutta
Soluciones Liouvillianas
Sistemas de ecuaciones diferenciales
Matrices antisimétricas
Cuerpo diferencial no constante
description This work contrasts numerical methods with algebraic methods. These methods are applied to solve a three dimensional linear differential system with skew symmetric matrices defined in a non- constant differential field. Algorithms and methods of Differential Galois Theory, are used to provide an algebraic solution, while numerical methods, in particular, methods from Runge - Kutta family, are applied to the same system. Finally, the absolute and relative errors between Liouvillians solution are calculated comparing the solutions obtained by means of algebraic methods and by means of numerical methods.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-04-02T21:46:18Z
dc.date.available.none.fl_str_mv 2018-04-02T21:46:18Z
dc.date.issued.none.fl_str_mv 2018-01
dc.type.spa.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 02131315
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1935
identifier_str_mv 02131315
url http://hdl.handle.net/20.500.12442/1935
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Editorial board
dc.source.spa.fl_str_mv Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería
Vol. 34, No.1 (2018)
institution Universidad Simón Bolívar
dc.source.uri.none.fl_str_mv https://www.scipedia.com/public/Acosta-Hum%C3%A1nez_et_al_2017a#
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/8e5a20c9-63e1-4a51-a494-0703c0f905ca/download
bitstream.checksum.fl_str_mv 3fdc7b41651299350522650338f5754d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814076112704110592
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Acosta-Humánez, Primitivo Belén94d27213-2a81-4a82-b710-e58036779ab7-1Jiménez, M.ead0ceca-acd6-4234-9e11-d920ae50194b-1Ospino, Jorge08596f1e-e939-4bf9-bb00-f9c947ab22f6-12018-04-02T21:46:18Z2018-04-02T21:46:18Z2018-0102131315http://hdl.handle.net/20.500.12442/1935This work contrasts numerical methods with algebraic methods. These methods are applied to solve a three dimensional linear differential system with skew symmetric matrices defined in a non- constant differential field. Algorithms and methods of Differential Galois Theory, are used to provide an algebraic solution, while numerical methods, in particular, methods from Runge - Kutta family, are applied to the same system. Finally, the absolute and relative errors between Liouvillians solution are calculated comparing the solutions obtained by means of algebraic methods and by means of numerical methods.Este trabajo contrasta métodos numéricos con métodos algebraicos aplicados ambos a la resolución de un sistema de ecuaciones diferenciales lineales 3-dimensionales con matrices antisimétricas definidas en un cuerpo diferencial no constante. Al mismo sistema se aplican métodos y algorítmos propios de la Teoría de Galois Diferencial, lo que permite resolverlo algebraicamente y métodos numéricos, en particular métodos de la familia de Runge - Kutta. Por último, se calculan los errores absolutos y relativos entre las soluciones Liouvillianas, obtenidas mediante la resolución algebraica y las soluciones obtenidas aplicando métodos numéricos.spaEditorial boardRevista Internacional de Métodos Numéricos para Cálculo y Diseño en IngenieríaVol. 34, No.1 (2018)https://www.scipedia.com/public/Acosta-Hum%C3%A1nez_et_al_2017a#Differential Galois theoryMethods from Runge - Kutta familyLiouvillians solutionsDifferential system of equationsSkew symmetric matricesNon-constant differential fieldTeoría de Galois diferencialMétodos de la familia de Runge - KuttaSoluciones LiouvillianasSistemas de ecuaciones diferencialesMatrices antisimétricasCuerpo diferencial no constanteGaloisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential fieldarticlehttp://purl.org/coar/resource_type/c_6501P.B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics. PhD. Thesis, Technical University of Catalonia, abril 2009.P. B. Acosta-Humánez, E. Suazo, Liouvillian propagators, Riccati equation and diferential theory. Journal of Physics a: Mathematical and Theoretical, 46, 2013.P. B. Acosta-Humánez, M. Machado, A. V. Sinitsyn A model of anaerobic digestion for biogas production using Abel equations. Far East Journal of Mathematical Sciences (FJMS), 101:1295-1311, 2017.R. Bulirsch, J. Stoer, Introduction to numerical analisys. Third edition. Springer-Verlag, 2002.J. C. Butcher, Numerical methods for ordinary differential equations. John Wiley and Sons, Second edition, 2008.J. D. Lambert, Numerical methods for Ordinary differential sistems. The initial value problem. John Wiley and Sons, 1991.Matlab. Available: http://www.mathworks.comJ. J. Morales-Ruiz, Differential Galois Theory and non-integrability of Hamiltonian systems. Birkhaüser, 1999.P.B. Acosta-Humánez, La teoría de Morales-Ramis y el algoritmo de Kovacic. Lecturas Matemáticas, Volumen Especial, pp. 21-56, 2006.R. L. Burden, J. Douglas Faires, Análisis numérico. Cengage Learning, Séptima edición, 2009.M. Calvo, J. I. Montijano, L. Rández, Una familia de métodos multirevolución Runge-Kutta explícitos de orden cinco. Departamento Matemática Aplicada, Universidad de Zaragoza, pp. 45-54, 2003.A. Campos, Cómo obtener ecuaciones reducidas de Riccati invariantes con respecto a un campo de vectores. Lecturas Matemáticas, Volumen Especial, pp. 95-103, 2006.S. A. Carrillo Torres, Constructibilidad mediante funciones Liouvillianas de curvas espaciales con curvatura y torsión racionales. Trabajo de grado, Universidad Sergio Arboleda, 2009.W, Cheney, D, Kincaid, Métodos numéricos y computación. Cengage Learning, Sexta edición, 2011.M. I. Jiménez Niebles, Enfoque Galoisiano y numérico de sistemas diferenciales lineales 3-dimensionales con matrices antisimétricas definidas en un cuerpo diferencial no constante. Tésis de Maestría, Universidad del Norte, 2015.T. Sauer, Análisis numérico. Pearson, Segunda edición, 2013.LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/8e5a20c9-63e1-4a51-a494-0703c0f905ca/download3fdc7b41651299350522650338f5754dMD5220.500.12442/1935oai:bonga.unisimon.edu.co:20.500.12442/19352019-04-11 21:51:35.268metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=