Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field
This work contrasts numerical methods with algebraic methods. These methods are applied to solve a three dimensional linear differential system with skew symmetric matrices defined in a non- constant differential field. Algorithms and methods of Differential Galois Theory, are used to provide an alg...
- Autores:
-
Acosta-Humánez, Primitivo Belén
Jiménez, M.
Ospino, Jorge
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- spa
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/1935
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/1935
- Palabra clave:
- Differential Galois theory
Methods from Runge - Kutta family
Liouvillians solutions
Differential system of equations
Skew symmetric matrices
Non-constant differential field
Teoría de Galois diferencial
Métodos de la familia de Runge - Kutta
Soluciones Liouvillianas
Sistemas de ecuaciones diferenciales
Matrices antisimétricas
Cuerpo diferencial no constante
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Summary: | This work contrasts numerical methods with algebraic methods. These methods are applied to solve a three dimensional linear differential system with skew symmetric matrices defined in a non- constant differential field. Algorithms and methods of Differential Galois Theory, are used to provide an algebraic solution, while numerical methods, in particular, methods from Runge - Kutta family, are applied to the same system. Finally, the absolute and relative errors between Liouvillians solution are calculated comparing the solutions obtained by means of algebraic methods and by means of numerical methods. |
---|