Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non- constant differential field

This work contrasts numerical methods with algebraic methods. These methods are applied to solve a three dimensional linear differential system with skew symmetric matrices defined in a non- constant differential field. Algorithms and methods of Differential Galois Theory, are used to provide an alg...

Full description

Autores:
Acosta-Humánez, Primitivo Belén
Jiménez, M.
Ospino, Jorge
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
spa
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1935
Acceso en línea:
http://hdl.handle.net/20.500.12442/1935
Palabra clave:
Differential Galois theory
Methods from Runge - Kutta family
Liouvillians solutions
Differential system of equations
Skew symmetric matrices
Non-constant differential field
Teoría de Galois diferencial
Métodos de la familia de Runge - Kutta
Soluciones Liouvillianas
Sistemas de ecuaciones diferenciales
Matrices antisimétricas
Cuerpo diferencial no constante
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Description
Summary:This work contrasts numerical methods with algebraic methods. These methods are applied to solve a three dimensional linear differential system with skew symmetric matrices defined in a non- constant differential field. Algorithms and methods of Differential Galois Theory, are used to provide an algebraic solution, while numerical methods, in particular, methods from Runge - Kutta family, are applied to the same system. Finally, the absolute and relative errors between Liouvillians solution are calculated comparing the solutions obtained by means of algebraic methods and by means of numerical methods.