Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory
We show the nonintegrability of the three-parameter Armburster--Guckenheimer--Kim quartic Hamiltonian using Morales--Ramis theory, with the exception of the three already known integrable cases. We use Poincaré sections to illustrate the breakdown of regular motion for some parameter values.
- Autores:
-
Acosta-Humánez, P.
Alvarez-Ramírez, M.
Stuchi, T.J.
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/1725
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/1725
- Palabra clave:
- Hamiltonian
Integrability of dynamical systems
Diferential Galois theory
Legendre equation
Schrodinger equation
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id |
USIMONBOL2_3d8d69e7426c6e77c8e52d296d5dbd11 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/1725 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory |
title |
Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory |
spellingShingle |
Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory Hamiltonian Integrability of dynamical systems Diferential Galois theory Legendre equation Schrodinger equation |
title_short |
Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory |
title_full |
Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory |
title_fullStr |
Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory |
title_full_unstemmed |
Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory |
title_sort |
Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory |
dc.creator.fl_str_mv |
Acosta-Humánez, P. Alvarez-Ramírez, M. Stuchi, T.J. |
dc.contributor.author.none.fl_str_mv |
Acosta-Humánez, P. Alvarez-Ramírez, M. Stuchi, T.J. |
dc.subject.eng.fl_str_mv |
Hamiltonian Integrability of dynamical systems Diferential Galois theory Legendre equation Schrodinger equation |
topic |
Hamiltonian Integrability of dynamical systems Diferential Galois theory Legendre equation Schrodinger equation |
description |
We show the nonintegrability of the three-parameter Armburster--Guckenheimer--Kim quartic Hamiltonian using Morales--Ramis theory, with the exception of the three already known integrable cases. We use Poincaré sections to illustrate the breakdown of regular motion for some parameter values. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-02-08T14:59:21Z |
dc.date.available.none.fl_str_mv |
2018-02-08T14:59:21Z |
dc.date.issued.none.fl_str_mv |
2018-01-09 |
dc.type.spa.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
15360040 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12442/1725 |
identifier_str_mv |
15360040 |
url |
http://hdl.handle.net/20.500.12442/1725 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional |
rights_invalid_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
dc.publisher.spa.fl_str_mv |
Sociedad de Matemática Industrial y Aplicada |
dc.source.eng.fl_str_mv |
Vol. 17, No.1 (2018) |
dc.source.spa.fl_str_mv |
Revista SIAM |
institution |
Universidad Simón Bolívar |
dc.source.uri.none.fl_str_mv |
https://doi.org/10.1137/16M1080689 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/1e121994-6347-4724-97ea-e395cf3cb274/download https://bonga.unisimon.edu.co/bitstreams/b18fa754-54f3-4295-afc2-bc07f40f9fa2/download https://bonga.unisimon.edu.co/bitstreams/48fee0fd-f469-46ef-93a1-9d79dacf02ec/download https://bonga.unisimon.edu.co/bitstreams/c02f1235-a50e-46b3-a700-be87a1b9f660/download https://bonga.unisimon.edu.co/bitstreams/c1e19d60-6e40-4623-a026-c5f6cc1a4fa8/download https://bonga.unisimon.edu.co/bitstreams/c8a5dfa9-e130-4a27-9b62-6c6cbd4e1021/download |
bitstream.checksum.fl_str_mv |
0d48430995cd71d1ee3b845491398e55 8a4605be74aa9ea9d79846c1fba20a33 70e5791ffdf158fde54613e7236e56ec b81f4e05353fcec3747c7a36ffb6f36a 165bcba2629cac682805e0a138ab70d0 10b8d9e5c8c648a5d6dabaaeb45eed9e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076090428162048 |
spelling |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Acosta-Humánez, P.4fa7634d-7d29-4f96-a6cb-627a48cb7570-1Alvarez-Ramírez, M.6bdd1617-7534-4fbe-bd41-3221d8f3638c-1Stuchi, T.J.90a5cc24-03e9-46b2-983b-1baad492f0ca-12018-02-08T14:59:21Z2018-02-08T14:59:21Z2018-01-0915360040http://hdl.handle.net/20.500.12442/1725We show the nonintegrability of the three-parameter Armburster--Guckenheimer--Kim quartic Hamiltonian using Morales--Ramis theory, with the exception of the three already known integrable cases. We use Poincaré sections to illustrate the breakdown of regular motion for some parameter values.engSociedad de Matemática Industrial y AplicadaVol. 17, No.1 (2018)Revista SIAMhttps://doi.org/10.1137/16M1080689HamiltonianIntegrability of dynamical systemsDiferential Galois theoryLegendre equationSchrodinger equationNonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theoryarticlehttp://purl.org/coar/resource_type/c_6501R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin Cummings, San Francisco, 1978.M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Wiley, New York, 1984.P. Acosta-Hum anez and D. Bl azquez-Sanz, Non-integrability of some Hamiltonians with rational potential, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), pp. 265{293, https://doi.org/10.3934/dcdsb. 2008.10.265.P. B. Acosta-Hum anez, Galoisian Approach to Supersymmetric Quantum Mechanics. The Integrability Analysis of the Schr odinger Equation by Means of Di erential Galois Theory, VDM Verlag Dr. M uller, Berlin, 2010.P. B. Acosta-Hum anez, J. L azaro, J. Morales-Ruiz, and C. Pantazi, On the integrability of polynomial vector elds in the plane by means of Picard-Vessiot theory, Discrete Contin. Dyn. Syst., 35 (2015), pp. 1767{1800, https://doi.org/10.3934/dcds.2015.35.1767.P. B. Acosta-Hum anez, J. Morales-Ruiz, and J. A. Weil, Galoisian approach to integrability of Schr odinger equation, Rep. Math. Phys., 67 (2011), pp. 305{374, https://doi.org/10.1016/ S0034-4877(11)60019-0.P. Andrle, A third integral of motion in a system with a potential of the fourth degree, Phys. Lett. A, 17 (1966), pp. 169{175.D. Armbruster, J. Guckenheimer, and S. Kim, Chaotic dynamics in systems with square symmetry, Phys. Lett. A, 140 (1989), pp. 416{420, https://doi.org/10.1016/0375-9601(89)90078-9.A. Bostan, T. Combot, and M. E. Din, Computing necessary integrability conditions for planar parametrized homogeneous potentials, in Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, 2014, pp. 67{74, https://doi.org/10.1145/2608628.2608662.G. Contopoulos, Galactic Dynamics, Princeton University Press, Princeton, NJ, 1988.A. A. Elmandouh, On the dynamics of Armbruster-Guckenheimer-Kim galactic potential in a rotating reference frame, Astrophys. Space Sci., 361 (2016), pp. 182{194, https://doi.org/10.1007/ s10509-016-2770-8.J. Hietarinta, Direct methods for the search of the second invariant, Phys. Rep., 147 (1987), pp. 87{154.I. Kaplansky, An Introduction to Di erential Algebra, Hermann, Paris, 1957.E. Kolchin, Di erential Algebra and Algebraic Groups, Pure and Appl. Math. 59, Academic Press, New York, 1973.J. Llibre and L. Roberto, Periodic orbits and non-integrability of Armbruster-Guckenheimer-Kim potential, Astrophys. Space Sci., 343 (2013), pp. 69{74, https://doi.org/10.1007/s10509-012-1210-7.A. Maciejewski and M. Przybylska, Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential, J. Math. Phys., 46 (2005), 062901, https://doi.org/10.1063/1. 1917311.J. Morales-Ruiz, Di erential Galois Theory and Non-Integrability of Hamiltonian Systems, Progr. Math. 178, Birkhauser, Basel, 1999.J. Morales-Ruiz and J. P. Ramis, Integrability of dynamical systems through di erential galois theory: A practical guide, in Di erential Algebra, Complex Analysis and Orthogonal Polynomials, Contemp. Math. 509, AMS, Providence, RI, 2010, pp. 143{220, http://dx.doi.org/10.1090/conm/509.J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems I, Methods Appl. Anal., 8 (2001), pp. 33{96, https://doi.org/10.4310/MAA.2001.v8.n1.a3.J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems II, Methods Appl. Anal., 8 (2001), pp. 97{112, https://doi.org/10.4310/MAA.2001.v8.n1.a4.K. Nakagawa, Direct Construction of Polynomial First Integrals for Hamiltonian Systems with a Two- Dimensional Homogeneous Polynomial Potential, Ph.D. thesis, Department of Astronomical Science, Graduate University for Advanced Study and the National Astronomical Observatory of Japan, 2002.G. P oschl and E. Teller, Bemerkungen zur quantenmechanik des anharmonischen oszillators, Z. Phys., 83 (1933), pp. 143{151.F. Simonelli and J. P. Gollub, Surface wave mode interactions: E ects of symmetry and degeneracy, J. Fluid Mech., 199 (1989), pp. 471{494, https://dx.doi.org/10.1017/S0022112089000443.E. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Di erential Equations, Part I, 2nd ed., Oxford University Press, Oxford, UK, 1962.M. van der Put and M. Singer, Galois Theory of Linear Di erential Equations, Grundlehren Math. Wiss. 328, Springer, Berlin, 2003.S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 1990.H. Yoshida, Nonintegrability of the truncated Toda lattice Hamiltonian at any order, Comm. Math. Phys., 116 (1988), pp. 529{538.ORIGINALPDF.pdfPDF.pdfFormato Pdf texto completoapplication/pdf20587266https://bonga.unisimon.edu.co/bitstreams/1e121994-6347-4724-97ea-e395cf3cb274/download0d48430995cd71d1ee3b845491398e55MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/b18fa754-54f3-4295-afc2-bc07f40f9fa2/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTNonintegrability of the Armbruster.pdf.txtNonintegrability of the Armbruster.pdf.txtExtracted texttext/plain45866https://bonga.unisimon.edu.co/bitstreams/48fee0fd-f469-46ef-93a1-9d79dacf02ec/download70e5791ffdf158fde54613e7236e56ecMD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain47732https://bonga.unisimon.edu.co/bitstreams/c02f1235-a50e-46b3-a700-be87a1b9f660/downloadb81f4e05353fcec3747c7a36ffb6f36aMD55THUMBNAILNonintegrability of the Armbruster.pdf.jpgNonintegrability of the Armbruster.pdf.jpgGenerated Thumbnailimage/jpeg1543https://bonga.unisimon.edu.co/bitstreams/c1e19d60-6e40-4623-a026-c5f6cc1a4fa8/download165bcba2629cac682805e0a138ab70d0MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg4802https://bonga.unisimon.edu.co/bitstreams/c8a5dfa9-e130-4a27-9b62-6c6cbd4e1021/download10b8d9e5c8c648a5d6dabaaeb45eed9eMD5620.500.12442/1725oai:bonga.unisimon.edu.co:20.500.12442/17252024-07-25 03:02:59.371open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |