Nonintegrability of the Armbruster-Guckenheimer-Kim Quartic Hamiltonian Through Morales-Ramis Theory
We show the nonintegrability of the three-parameter Armburster--Guckenheimer--Kim quartic Hamiltonian using Morales--Ramis theory, with the exception of the three already known integrable cases. We use Poincaré sections to illustrate the breakdown of regular motion for some parameter values.
- Autores:
-
Acosta-Humánez, P.
Alvarez-Ramírez, M.
Stuchi, T.J.
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/1725
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/1725
- Palabra clave:
- Hamiltonian
Integrability of dynamical systems
Diferential Galois theory
Legendre equation
Schrodinger equation
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Summary: | We show the nonintegrability of the three-parameter Armburster--Guckenheimer--Kim quartic Hamiltonian using Morales--Ramis theory, with the exception of the three already known integrable cases. We use Poincaré sections to illustrate the breakdown of regular motion for some parameter values. |
---|