Newton-Raphson method initialization for non-analytical equations solution linked to anticipated annuities

The series of payments made in equal intervals of time is known, in the world of financial mathematics, as an annuity. An anticipated annuity is one whose periodic payment expires at the beginning of the established payment interval. The non-analytical equation that allows us to calculate the intere...

Full description

Autores:
Vera, M
Flórez, M
Salazar-Torres, J
Huérfano, Y
Gelvez-Almeida, E
Valbuena, O
Vera, M I
Aranguen, M
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/5076
Acceso en línea:
https://hdl.handle.net/20.500.12442/5076
Palabra clave:
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_3ce545d0efadcf5edc5305cc9d37077b
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/5076
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Newton-Raphson method initialization for non-analytical equations solution linked to anticipated annuities
title Newton-Raphson method initialization for non-analytical equations solution linked to anticipated annuities
spellingShingle Newton-Raphson method initialization for non-analytical equations solution linked to anticipated annuities
title_short Newton-Raphson method initialization for non-analytical equations solution linked to anticipated annuities
title_full Newton-Raphson method initialization for non-analytical equations solution linked to anticipated annuities
title_fullStr Newton-Raphson method initialization for non-analytical equations solution linked to anticipated annuities
title_full_unstemmed Newton-Raphson method initialization for non-analytical equations solution linked to anticipated annuities
title_sort Newton-Raphson method initialization for non-analytical equations solution linked to anticipated annuities
dc.creator.fl_str_mv Vera, M
Flórez, M
Salazar-Torres, J
Huérfano, Y
Gelvez-Almeida, E
Valbuena, O
Vera, M I
Aranguen, M
dc.contributor.author.none.fl_str_mv Vera, M
Flórez, M
Salazar-Torres, J
Huérfano, Y
Gelvez-Almeida, E
Valbuena, O
Vera, M I
Aranguen, M
description The series of payments made in equal intervals of time is known, in the world of financial mathematics, as an annuity. An anticipated annuity is one whose periodic payment expires at the beginning of the established payment interval. The non-analytical equation that allows us to calculate the interest rate, linked to the anticipated annuity, can be solved using several numerical methods, in particular, the numerical method called Newton-Rhapson. The main problem with this method is its initialization, which requires of one starting point that, usually, is estimated without any scientific background or using random or arbitraries mechanisms. In order to address this problem, in this paper, we establish as main objective to demonstrate that the Newton-Rhapson method can be initialized using only the data, of an anticipated annuity, identified as capital, income and payment intervals without the need to use the initialization strategies, reported in the literature. Through this article, a strategy is presented that allow us to calculate the value of the AA interest rate using the MNR. The value of the error generated for the problematic considered in order to assess the quality of the work performed, is a clear indicator of the good performance of the proposed strategy. This strategy for obtaining the starting point of the aforementioned numerical method is useful in the financial mathematical context, for example, when is necessary the interest rate calculation.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-27T04:15:22Z
dc.date.available.none.fl_str_mv 2020-03-27T04:15:22Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.eng.fl_str_mv article
dc.identifier.issn.none.fl_str_mv 17426596
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/5076
identifier_str_mv 17426596
url https://hdl.handle.net/20.500.12442/5076
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.eng.fl_str_mv pdf
dc.publisher.eng.fl_str_mv IOP Publishing
dc.source.eng.fl_str_mv Journal of Physics: Conference Series
Vol. 1414 (2019)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012012
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/d29ae234-382f-4c33-8c76-cf687afefe56/download
https://bonga.unisimon.edu.co/bitstreams/556c546f-ae47-4a81-a89a-37d8167b1099/download
https://bonga.unisimon.edu.co/bitstreams/19f146ba-bb96-4a7d-960f-d86645a9503b/download
https://bonga.unisimon.edu.co/bitstreams/03caa4f2-a5b3-41bc-ab4c-0207053122c1/download
https://bonga.unisimon.edu.co/bitstreams/7ed98f34-31a4-4a8f-a488-353d212d906f/download
https://bonga.unisimon.edu.co/bitstreams/1369747c-220d-4d95-b831-eb9a28ad02b5/download
https://bonga.unisimon.edu.co/bitstreams/a1910057-b251-44c4-b85c-d8d5f02b1d05/download
bitstream.checksum.fl_str_mv 0daf155f2205b203a6576d6f6723e13b
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
f237631c6d4a62b46e8f161c6077131e
a4c08bc008c76c1bedcfe59636f8ca18
c2eb360f07ba2cf87a0978bf7fa5e669
95431b355cb4238665d284e20771e7d4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076156173877248
spelling Vera, M847eada8-99d3-4ff1-a613-ae3f62c30f9eFlórez, Me9d2db3a-788b-4cf7-a267-95983e59762aSalazar-Torres, J40a2a6c9-3e39-4994-9b5a-1c6112bd8000Huérfano, Y001cc35e-75ac-48b8-9fd0-3c22464ff80fGelvez-Almeida, E55062614-d175-4da1-834a-d7e54dcc92deValbuena, O4286f2e0-ce46-49ce-a106-bd00c21a76e9Vera, M I4c675edd-c7b6-4fee-87e2-feb90cfc363eAranguen, M9a7c5ee0-5d86-4677-93c4-ac4f76036cd72020-03-27T04:15:22Z2020-03-27T04:15:22Z201917426596https://hdl.handle.net/20.500.12442/5076The series of payments made in equal intervals of time is known, in the world of financial mathematics, as an annuity. An anticipated annuity is one whose periodic payment expires at the beginning of the established payment interval. The non-analytical equation that allows us to calculate the interest rate, linked to the anticipated annuity, can be solved using several numerical methods, in particular, the numerical method called Newton-Rhapson. The main problem with this method is its initialization, which requires of one starting point that, usually, is estimated without any scientific background or using random or arbitraries mechanisms. In order to address this problem, in this paper, we establish as main objective to demonstrate that the Newton-Rhapson method can be initialized using only the data, of an anticipated annuity, identified as capital, income and payment intervals without the need to use the initialization strategies, reported in the literature. Through this article, a strategy is presented that allow us to calculate the value of the AA interest rate using the MNR. The value of the error generated for the problematic considered in order to assess the quality of the work performed, is a clear indicator of the good performance of the proposed strategy. This strategy for obtaining the starting point of the aforementioned numerical method is useful in the financial mathematical context, for example, when is necessary the interest rate calculation.pdfengIOP PublishingAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Journal of Physics: Conference SeriesVol. 1414 (2019)https://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012012Newton-Raphson method initialization for non-analytical equations solution linked to anticipated annuitiesarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Portus G 1997 Matemáticas financieras (Bogotá: McGraw Hill)Baca G 2010 Fundamentos de ingeniería económica (México: Mc Graw-Hill)Meza J 2017 Matemáticas financieras aplicadas (Bogotá: Ecoe Ediciones)Mena R 2017 Introducción al estudio de las matemáticas financieras (Barranquilla: Ediciones Universidad Simón Bolívar)González G 1998 Matemática financiera: Intereses y anualidades ciertas (México: McGrawHill)Cánovas R 2004 Matemáticas financieras, fundamentos y aplicaciones (México: Ediciones Trillas)Cano A 2013 Matemáticas financieras aplicada a las ciencias económicas, administrativas y contables (Bogotá: Ediciones de la U)Burden R and Faires D 2010 Numerical analysis (Mexico: Cenage Learning)Smola A 1998 Learning with kernels (Germany: Technische Universität Berlin)Gunn S 1998 Support vector machines for classification and regression (Southampton: Southampton University)Suykens J, Gestel T and Brabanter J 2002 Least squares support vector machines Neural Processing Letters 9(3) 293Hamming R 1973 Numerical methods for scientist and engineers (New York: Dover Publications)ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf484949https://bonga.unisimon.edu.co/bitstreams/d29ae234-382f-4c33-8c76-cf687afefe56/download0daf155f2205b203a6576d6f6723e13bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/556c546f-ae47-4a81-a89a-37d8167b1099/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/19f146ba-bb96-4a7d-960f-d86645a9503b/download733bec43a0bf5ade4d97db708e29b185MD53TEXTNewton-Raphson_Method_Non-analytical-ES.pdf.txtNewton-Raphson_Method_Non-analytical-ES.pdf.txtExtracted texttext/plain15067https://bonga.unisimon.edu.co/bitstreams/03caa4f2-a5b3-41bc-ab4c-0207053122c1/downloadf237631c6d4a62b46e8f161c6077131eMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain15593https://bonga.unisimon.edu.co/bitstreams/7ed98f34-31a4-4a8f-a488-353d212d906f/downloada4c08bc008c76c1bedcfe59636f8ca18MD56THUMBNAILNewton-Raphson_Method_Non-analytical-ES.pdf.jpgNewton-Raphson_Method_Non-analytical-ES.pdf.jpgGenerated Thumbnailimage/jpeg1297https://bonga.unisimon.edu.co/bitstreams/1369747c-220d-4d95-b831-eb9a28ad02b5/downloadc2eb360f07ba2cf87a0978bf7fa5e669MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3357https://bonga.unisimon.edu.co/bitstreams/a1910057-b251-44c4-b85c-d8d5f02b1d05/download95431b355cb4238665d284e20771e7d4MD5720.500.12442/5076oai:bonga.unisimon.edu.co:20.500.12442/50762024-08-14 21:54:08.938http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u