Biochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela [version 1; referees: awaiting peer review]
Background: In 1980, Reuben Andresen observed that in certain individuals, obesity did not increase mortality, introducing an atypical phenotype called “healthy obese”. Other studies reported that 10-15 % of lean individuals presented insulin resistance, hyperglycemia and dyslipidemia. The objective...
- Autores:
-
Bermudez, Valmore
Rojas, Joselyn
Salazar, Juan
Martinez, Maria Sofia
Olivar, Luis
Calvo, Maria Jose
Mindiola, Andres
Añez, Roberto
Wilches-Duran, Sandra
Cerda, Marcos
Graterol, Modesto
Graterol, Rosemily
Hernandez, Juan Diego
Garicano, Carlos
Velasco, Manuel
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/2176
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/2176
- Palabra clave:
- Metabolic phenotypes
two-step cluster
Metabolically unhealthy lean
Metabolically healthy obese
Coronary risk
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id |
USIMONBOL2_3c2e3bff0971ecfc0af6d1272e0315eb |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/2176 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Biochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela [version 1; referees: awaiting peer review] |
title |
Biochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela [version 1; referees: awaiting peer review] |
spellingShingle |
Biochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela [version 1; referees: awaiting peer review] Metabolic phenotypes two-step cluster Metabolically unhealthy lean Metabolically healthy obese Coronary risk |
title_short |
Biochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela [version 1; referees: awaiting peer review] |
title_full |
Biochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela [version 1; referees: awaiting peer review] |
title_fullStr |
Biochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela [version 1; referees: awaiting peer review] |
title_full_unstemmed |
Biochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela [version 1; referees: awaiting peer review] |
title_sort |
Biochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela [version 1; referees: awaiting peer review] |
dc.creator.fl_str_mv |
Bermudez, Valmore Rojas, Joselyn Salazar, Juan Martinez, Maria Sofia Olivar, Luis Calvo, Maria Jose Mindiola, Andres Añez, Roberto Wilches-Duran, Sandra Cerda, Marcos Graterol, Modesto Graterol, Rosemily Hernandez, Juan Diego Garicano, Carlos Velasco, Manuel |
dc.contributor.author.none.fl_str_mv |
Bermudez, Valmore Rojas, Joselyn Salazar, Juan Martinez, Maria Sofia Olivar, Luis Calvo, Maria Jose Mindiola, Andres Añez, Roberto Wilches-Duran, Sandra Cerda, Marcos Graterol, Modesto Graterol, Rosemily Hernandez, Juan Diego Garicano, Carlos Velasco, Manuel |
dc.subject.eng.fl_str_mv |
Metabolic phenotypes two-step cluster Metabolically unhealthy lean Metabolically healthy obese Coronary risk |
topic |
Metabolic phenotypes two-step cluster Metabolically unhealthy lean Metabolically healthy obese Coronary risk |
description |
Background: In 1980, Reuben Andresen observed that in certain individuals, obesity did not increase mortality, introducing an atypical phenotype called “healthy obese”. Other studies reported that 10-15 % of lean individuals presented insulin resistance, hyperglycemia and dyslipidemia. The objective of this study was to evaluate biochemical and clinical characteristics of metabolic phenotypes in Maracaibo city. Methods: A descriptive, cross-sectional study with a randomized multistage sampling was performed including 1226 non diabetic individuals from both sexes. For phenotype definition, the subjects were first classified according to their BMI into Normal-Weight, Overweight and Obese; then divided in metabolically healthy and unhealthy using a two-step analysis cluster. To evaluate the relationship with coronary risk, a multiple logistic regression model was performed. Results: In the studied population, 5.2% (n=64) corresponded to unhealthy lean subjects, and 17.4% (n=217) to healthy obese subjects. Metabolically unhealthy normal-weight (MUNW) phenotype was found in males in 53.3% in contrast to 51.3% of metabolically unhealthy obese (MUO) phenotype found in females. An association between metabolically unhealthy phenotypes and a higher risk of a coronary event was found, especially for obese individuals (MHO: OR=1.85 CI95%: 1.11-3.09; p=0.02 and MUO: OR=2.09 CI95%: 1.34-3.28; p<0.01). Conclusion: Individuals with atypical metabolic phenotypes exist in Maracaibo city. Related factors may include insulin resistance, basal glucose levels, and triglycerides levels. Lastly, cardiovascular risk exhibited by healthy obese individuals should be classified in categories of major coronary risk related to lean subjects. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-07-12T20:15:19Z |
dc.date.available.none.fl_str_mv |
2018-07-12T20:15:19Z |
dc.date.issued.none.fl_str_mv |
2018-02 |
dc.type.eng.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
20461402 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12442/2176 |
identifier_str_mv |
20461402 |
url |
http://hdl.handle.net/20.500.12442/2176 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional |
rights_invalid_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
dc.publisher.eng.fl_str_mv |
is published by F1000 Research Ltd |
dc.source.eng.fl_str_mv |
F1000Research |
dc.source.spa.fl_str_mv |
Vol. 7, No.230 (2018) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://f1000research.com/articles/7-230/v1 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/9bdf7d9c-6b6b-4c50-9254-40277c7fa1bc/download https://bonga.unisimon.edu.co/bitstreams/7a2faa5e-4338-408a-9ba5-6c5f0dd737e7/download https://bonga.unisimon.edu.co/bitstreams/6d27fc67-46d8-47ef-88ae-a8473ef79504/download https://bonga.unisimon.edu.co/bitstreams/28160069-19ca-466a-b644-5d27ca6f5bd8/download https://bonga.unisimon.edu.co/bitstreams/473e84ec-2287-4099-bd7f-bf1cbd5220c5/download https://bonga.unisimon.edu.co/bitstreams/32089a43-e9fd-42e3-85a9-148e42eb15df/download |
bitstream.checksum.fl_str_mv |
58f8905d013d499b4d8ce46a7e37ac0e 3fdc7b41651299350522650338f5754d 924dcd981c9e5bea88d502cc49b43a0a 2e627110cf5636b862e9ea5179ea5e44 c0b5bc3b1828d5b592e8906239c7e379 2864a022386c7a2266c13f88cedf0cc9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076110009270272 |
spelling |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Bermudez, Valmore6bcbb12f-5c0b-46ea-9a9a-e059644f7f4e-1Rojas, Joselyn2aa91570-0516-424d-8f76-25cd7b39be6e-1Salazar, Juanfbd053e7-5aea-424c-812f-92153ecb9181-1Martinez, Maria Sofia52450980-3f16-45c1-a053-8fad95d099c5-1Olivar, Luisf2fa2efd-f10f-4f8f-a731-c59a2c25964f-1Calvo, Maria Jose3eaa6575-9a65-486a-a367-98b35285534b-1Mindiola, Andres0205aea7-c0e9-4303-b053-6cc043914928-1Añez, Roberto0a8ecfdc-a89a-4435-9859-b66bba8947fa-1Wilches-Duran, Sandraf963f966-11ac-406d-bc8c-f80ae093f13f-1Cerda, Marcosf544118b-7bb4-4bf7-b8e8-fb4d2017eaf5-1Graterol, Modesto59713475-4607-4bff-90c1-a66ad9f0a173-1Graterol, Rosemily9e55a756-71ff-4945-99cf-ab0ecd38182f-1Hernandez, Juan Diego448c2d02-87fd-4311-916d-a1b7b75c519f-1Garicano, Carlos96ac943f-0dd6-4a77-a76d-9c0024646fe5-1Velasco, Manuel688b8ff6-51ce-4b65-b359-29f1098a0d1d-12018-07-12T20:15:19Z2018-07-12T20:15:19Z2018-0220461402http://hdl.handle.net/20.500.12442/2176Background: In 1980, Reuben Andresen observed that in certain individuals, obesity did not increase mortality, introducing an atypical phenotype called “healthy obese”. Other studies reported that 10-15 % of lean individuals presented insulin resistance, hyperglycemia and dyslipidemia. The objective of this study was to evaluate biochemical and clinical characteristics of metabolic phenotypes in Maracaibo city. Methods: A descriptive, cross-sectional study with a randomized multistage sampling was performed including 1226 non diabetic individuals from both sexes. For phenotype definition, the subjects were first classified according to their BMI into Normal-Weight, Overweight and Obese; then divided in metabolically healthy and unhealthy using a two-step analysis cluster. To evaluate the relationship with coronary risk, a multiple logistic regression model was performed. Results: In the studied population, 5.2% (n=64) corresponded to unhealthy lean subjects, and 17.4% (n=217) to healthy obese subjects. Metabolically unhealthy normal-weight (MUNW) phenotype was found in males in 53.3% in contrast to 51.3% of metabolically unhealthy obese (MUO) phenotype found in females. An association between metabolically unhealthy phenotypes and a higher risk of a coronary event was found, especially for obese individuals (MHO: OR=1.85 CI95%: 1.11-3.09; p=0.02 and MUO: OR=2.09 CI95%: 1.34-3.28; p<0.01). Conclusion: Individuals with atypical metabolic phenotypes exist in Maracaibo city. Related factors may include insulin resistance, basal glucose levels, and triglycerides levels. Lastly, cardiovascular risk exhibited by healthy obese individuals should be classified in categories of major coronary risk related to lean subjects.engis published by F1000 Research LtdF1000ResearchVol. 7, No.230 (2018)https://f1000research.com/articles/7-230/v1Metabolic phenotypestwo-step clusterMetabolically unhealthy leanMetabolically healthy obeseCoronary riskBiochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela [version 1; referees: awaiting peer review]articlehttp://purl.org/coar/resource_type/c_6501World Health Organization (WHO): Obesity and overweight: Fact Sheet. 2016; [cited 2017 Mar 20].Center for Disease Control and Prevention (CDC): Adult Obesity Causes & Consequences | Overweight & Obesity. 2016; [cited 2017 Mar 20].Andres R: Effect of obesity on total mortality. Int J Obes. 1980; 4(4): 381–6.Ferrannini E, Natali A, Bell P, et al.: Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest. 1997; 100(5): 1166–73.Bernstein RS, Grant N, Kipnis DM: Hyperinsulinemia and enlarged adipocytes in patients with endogenous hyperlipoproteinemia without obesity or diabetes mellitus. Diabetes. 1975; 24(2): 207–13.Ruderman NB, Schneider SH, Berchtold P: The “metabolically-obese,” normalweight individual. Am J Clin Nutr. 1981; 34(8): 1617–21.Shaharyar S, Roberson LL, Jamal O, et al.: Obesity and metabolic phenotypes (metabolically healthy and unhealthy variants) are significantly associated with prevalence of elevated C-reactive protein and hepatic steatosis in a large healthy Brazilian population. J Obes. 2015; 2015: 178526.Bermúdez V, Marcano RP, Cano C, et al.: The Maracaibo city metabolic syndrome prevalence study: design and scope. Am J Ther. 2010; 17(3): 288–94.Bermúdez V, Rojas J, Salazar J, et al.: Sensitivity and Specificity Improvement in Abdominal Obesity Diagnosis Using Cluster Analysis during Waist Circumference Cut-Off Point Selection. J Diabetes Res. 2015; 2015: 750265.Mendez Castellano H, de Mendez MC: Estratificacion social y biologia humana: metodo Graffar modificado. Arch Venez Pueric Pediatría. 1986; 49(3–4): 93–104.Chobanian AV, Bakris GL, Black HR, et al.: The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003; 289(19): 2560–72.World Health Organization (WHO): The world health report 2003 - shaping the future. 2003; [cited 2017 Nov 20].Center for Disease Control and Prevention (CDC): Health Statistics, NHANES III Reference Manuals and Reports. 1996; [cited 2017 Nov 20].Bermudez V, Salazar J, Martínez MS, et al.: Prevalence and Associated Factors of Insulin Resistance in Adults from Maracaibo City, Venezuela. Adv Prev Med. 2016; 2016: 9405105.Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972; 18(6): 499–502.Levy JC, Matthews DR, Hermans MP: Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998; 21(12): 2191–2.Amato MC, Giordano C, Galia M, et al.: Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010; 33(4): 920–2.Alberti KG, Eckel RH, Grundy SM, et al.: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009; 120(16): 1640–5.Bermúdez V, Salazar J, Bello L, et al.: Coronary Risk Estimation According to a Recalibrated Framingham-Wilson Score in the Maracaibo City Metabolic Syndrome Prevalence Study. J Cardiol Photon. 2014; 107: 160–8.World Health Organization (WHO): Global action plan for the prevention and control of NCDs 2013–2020. 2013; [cited 2017 Nov 20].Hubert HB, Feinleib M, McNamara PM, et al.: Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983; 67(5): 968–77.Brochu M, Tchernof A, Dionne IJ, et al.: What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? J Clin Endocrinol Metab. 2001; 86(3): 1020–5.Stefan N, Kantartzis K, Machann J, et al.: Identification and characterization of metabolically benign obesity in humans. Arch Intern Med. 2008; 168(15): 1609–16.Aguilar-Salinas CA, García EG, Robles L, et al.: High adiponectin concentrations are associated with the metabolically healthy obese phenotype. J Clin Endocrinol Metab. 2008; 93(10): 4075–9.Martínez-Larrad MT, Corbatón Anchuelo A, Del Prado N, et al.: Profile of individuals who are metabolically healthy obese using different definition criteria. A population-based analysis in the spanish population. PLoS One. 2014; 9(9): e106641.Lee K: Metabolically obese but normal weight (MONW) and metabolically healthy but obese (MHO) phenotypes in Koreans: characteristics and health behaviors. Asia Pac J Clin Nutr. 2009; 18(2): 280–4.Zheng R, Yang M, Bao Y, et al.: Prevalence and Determinants of Metabolic Health in Subjects with Obesity in Chinese Population. Int J Environ Res Public Health. 2015; 12(11): 13662–77.Calori G, Lattuada G, Piemonti L, et al.: Prevalence, metabolic features, and prognosis of metabolically healthy obese Italian individuals: the Cremona Study. Diabetes Care. 2011; 34(1): 210–5.Lopez-Garcia E, Guallar-Castillon P, Leon-Muñoz L, et al.: Prevalence and determinants of metabolically healthy obesity in Spain. Atherosclerosis. 2013; 231(1): 152–7.Hamer M, Bell JA, Sabia S, et al.: Stability of metabolically healthy obesity over 8 years: the English Longitudinal Study of Ageing. Eur J Endocrinol. 2015; 173(5): 703–8.Kuk JL, Ardern CI: Are metabolically normal but obese individuals at lower risk for all-cause mortality? Diabetes Care. 2009; 32(12): 2297–9.Wildman RP, Muntner P, Reynolds K, et al.: The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004). Arch Intern Med. 2008; 168(15): 1617–24.Fanghänel-Salmón G, Gutiérrez-Salmeán G, Samaniego V, et al.: Obesity Phenotypes In Urban Middle-Class Cohorts; The Prit-Lindavista Merging Evidence In Mexico: The Opus Prime Study. Nutr Hosp. 2015; 32(1): 182–8.Bo S, Musso G, Gambino R, et al.: Prognostic implications for insulin-sensitive and insulin-resistant normal-weight and obese individuals from a populationbased cohort. Am J Clin Nutr. 2012; 96(5): 962–9.Hinnouho GM, Czernichow S, Dugravot A, et al.: Metabolically healthy obesity and the risk of cardiovascular disease and type 2 diabetes: the Whitehall II cohort study. Eur Heart J. 2015; 36(9): 551–9.Yoo HK, Choi EY, Park EW, et al.: Comparison of Metabolic Characteristics of Metabolically Healthy but Obese (MHO) Middle-Aged Men According to Different Criteria. Korean J Fam Med. 2013; 34(1): 19–26.Schmiegelow MD, Hedlin H, Mackey RH, et al.: Race and ethnicity, obesity, metabolic health, and risk of cardiovascular disease in postmenopausal women. J Am Heart Assoc. 2015; 4(5): pii:e001695.Yang HK, Han K, Kwon HS, et al.: Obesity, metabolic health, and mortality in adults: a nationwide population-based study in Korea. Sci Rep. 2016; 6(6): 30329.Diniz Mde F, Beleigoli AM, Ribeiro AL, et al.: Factors associated with metabolically healthy status in obesity, overweight, and normal weight at baseline of ELSA-Brasil. Medicine (Baltimore). 2016; 95(27): e4010.Ortega FB, Lee DC, Katzmarzyk PT, et al.: The intriguing metabolically healthy but obese phenotype: cardiovascular prognosis and role of fitness. Eur Heart J. 2013; 34(5): 389–97.Romero-Corral A, Somers VK, Sierra-Johnson J, et al.: Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J. 2010; 31(6): 737–46.Madeira FB, Silva AA, Veloso HF, et al.: Normal weight obesity is associated with metabolic syndrome and insulin resistance in young adults from a middle-income country. PLoS One. 2013; 8(3): e60673.Succurro E, Marini MA, Frontoni S, et al.: Insulin secretion in metabolically obese, but normal weight, and in metabolically healthy but obese individuals. Obes (Silver Spring). 2008; 16(8): 1881–6.Ogorodnikova AD, Kim M, McGinn AP, et al.: Incident cardiovascular disease events in metabolically benign obese individuals. Obes (Silver Spring). 2012; 20(3): 651–9.Hansen L, Netterstrøm MK, Johansen NB, et al.: Metabolically Healthy Obesity and Ischemic Heart Disease: A 10-Year Follow-Up of the Inter99 Study. J Clin Endocrinol Metab. 2017; 102(6): 1934–1942.Kim NH, Seo JA, Cho H, et al.: Risk of the Development of Diabetes and Cardiovascular Disease in Metabolically Healthy Obese People: The Korean Genome and Epidemiology Study. Medicine (Baltimore). 2016; 95(15): e3384.Durward CM, Hartman TJ, Nickols-Richardson SM: All-cause mortality risk of metabolically healthy obese individuals in NHANES III. J Obes. 2012; 2012: 460321.Shaharyar S, Roberson LL, Jamal O, et al.: Obesity and metabolic phenotypes (metabolically healthy and unhealthy variants) are significantly associated with prevalence of elevated C-reactive protein and hepatic steatosis in a large healthy Brazilian population. J Obes. 2015; 2015: 178526.Khan UI, Wang D, Thurston RC, et al.: Burden of subclinical cardiovascular disease in “metabolically benign” and “at-risk” overweight and obese women: the Study of Women’s Health Across the Nation (SWAN). Atherosclerosis. 2011; 217(1): 179–86.Bermudez V, Rojas J, Salazar J, et al.: Dataset 1 in: Biochemical and clinical characterization of metabolic phenotypes: a cross-sectional study from Maracaibo city, Venezuela. F1000Research. 2018.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf684483https://bonga.unisimon.edu.co/bitstreams/9bdf7d9c-6b6b-4c50-9254-40277c7fa1bc/download58f8905d013d499b4d8ce46a7e37ac0eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/7a2faa5e-4338-408a-9ba5-6c5f0dd737e7/download3fdc7b41651299350522650338f5754dMD52TEXTBiochemical and clinical characterization of metabolic.pdf.txtBiochemical and clinical characterization of metabolic.pdf.txtExtracted texttext/plain53915https://bonga.unisimon.edu.co/bitstreams/6d27fc67-46d8-47ef-88ae-a8473ef79504/download924dcd981c9e5bea88d502cc49b43a0aMD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain54825https://bonga.unisimon.edu.co/bitstreams/28160069-19ca-466a-b644-5d27ca6f5bd8/download2e627110cf5636b862e9ea5179ea5e44MD55THUMBNAILBiochemical and clinical characterization of metabolic.pdf.jpgBiochemical and clinical characterization of metabolic.pdf.jpgGenerated Thumbnailimage/jpeg1693https://bonga.unisimon.edu.co/bitstreams/473e84ec-2287-4099-bd7f-bf1cbd5220c5/downloadc0b5bc3b1828d5b592e8906239c7e379MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5785https://bonga.unisimon.edu.co/bitstreams/32089a43-e9fd-42e3-85a9-148e42eb15df/download2864a022386c7a2266c13f88cedf0cc9MD5620.500.12442/2176oai:bonga.unisimon.edu.co:20.500.12442/21762024-07-26 03:04:09.534open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4= |