Brain hematoma computational segmentation

In computed tomography imaging, brain hematoma (BH) segmentation is a very challenging process due to a high variability of BH morphology, low contrast and noisy images. Because of this, BH segmentation is an open problem. In order to approach this problem, we propose an automatic technique, named n...

Full description

Autores:
Sáenz, F
Vera, M
Huerfano, Y
Molina, V
Martinez, L
Vera, M I
Salazar, W
Gelvez, E
Salazar, J
Valbuena, O
Robles, H
Bautista, M
Arango, J
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2531
Acceso en línea:
http://hdl.handle.net/20.500.12442/2531
Palabra clave:
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_3bffecde6039f153a2d3f7a9048a4ab4
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/2531
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Brain hematoma computational segmentation
title Brain hematoma computational segmentation
spellingShingle Brain hematoma computational segmentation
title_short Brain hematoma computational segmentation
title_full Brain hematoma computational segmentation
title_fullStr Brain hematoma computational segmentation
title_full_unstemmed Brain hematoma computational segmentation
title_sort Brain hematoma computational segmentation
dc.creator.fl_str_mv Sáenz, F
Vera, M
Huerfano, Y
Molina, V
Martinez, L
Vera, M I
Salazar, W
Gelvez, E
Salazar, J
Valbuena, O
Robles, H
Bautista, M
Arango, J
dc.contributor.author.none.fl_str_mv Sáenz, F
Vera, M
Huerfano, Y
Molina, V
Martinez, L
Vera, M I
Salazar, W
Gelvez, E
Salazar, J
Valbuena, O
Robles, H
Bautista, M
Arango, J
description In computed tomography imaging, brain hematoma (BH) segmentation is a very challenging process due to a high variability of BH morphology, low contrast and noisy images. Because of this, BH segmentation is an open problem. In order to approach this problem, we propose an automatic technique, named nonlinear technique (NLT), based on a thresholding method, noise suppression filters, intelligent operators, a clustering strategy and a binary morphological operator. NLT performance is assessed by Jaccard's similarity index (JSI) used to compare automatic and manual BH segmentations. This assessment allows developing a tuning process for establishing the optimal parameters of each of the algorithms which constitute the proposed technique. The results indicate a good correlation, based on JSI, between the manual segmentations and the automatic ones. Finally, the BH volume is generated considering the automatic segmentation. This volume indicates whether or not the patient must undergo a surgical intervention for BH treatment.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2019-01-25T20:04:46Z
dc.date.available.none.fl_str_mv 2019-01-25T20:04:46Z
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/2531
identifier_str_mv 17426588
url http://hdl.handle.net/20.500.12442/2531
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv IOP Publishing
dc.source.eng.fl_str_mv Journal of Physics: Conference Series
dc.source.spa.fl_str_mv Vol. 1126, No. 012071 (2018)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv doi :10.1088/1742-6596/1126/1/012071
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/2e4d7340-1ce0-4b13-ae6c-f7f76ee6fefd/download
https://bonga.unisimon.edu.co/bitstreams/37edeb09-f8b7-4967-885e-3465905f1e13/download
https://bonga.unisimon.edu.co/bitstreams/b09fb770-b25f-4ca0-9021-63b3b378e666/download
https://bonga.unisimon.edu.co/bitstreams/09ae362c-a9b9-4e0d-8ab7-7fe246d4fad4/download
https://bonga.unisimon.edu.co/bitstreams/8bc2fb4e-a824-48a4-9b93-46e59ef65637/download
https://bonga.unisimon.edu.co/bitstreams/b273e2ca-3b20-4a88-b936-fead1254b35f/download
bitstream.checksum.fl_str_mv ff151921e182650ac3ba59fdab190c5d
3fdc7b41651299350522650338f5754d
d5dce208918c0459c27f161439916e7d
af23d05c2f096629656fb47a2bba359d
a8bbbdb18cfea85e056f9af36495c66c
0855009b3fcd86fdeffbf0f30257ed6f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1834107412618936320
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Sáenz, Fe7336b90-cde6-4d03-880d-55f6a198725d-1Vera, M847eada8-99d3-4ff1-a613-ae3f62c30f9e-1Huerfano, Y8a6a81bd-56d9-4903-9c91-b4203d27ef83-1Molina, V032250ff-d108-4692-b72d-63a013ff98b4-1Martinez, L1355c5ff-8425-4dff-bdf2-9868f1a11037-1Vera, M I4c675edd-c7b6-4fee-87e2-feb90cfc363e-1Salazar, Wf373f4f6-6308-4037-aa3f-bbcbde9cbe1b-1Gelvez, Ed34b29f4-5323-4e58-83ca-7ae2e85e1ce0-1Salazar, J6f1d932b-654d-42d9-bc5b-30b467b897d2-1Valbuena, O4286f2e0-ce46-49ce-a106-bd00c21a76e9-1Robles, Ha24aace4-ae71-4c29-86a0-43aa3648e5bf-1Bautista, M2fdc3acb-b41e-45fd-8bf5-739dab74ea9d-1Arango, J2990edc6-3822-4731-aa68-7ddbbf479124-12019-01-25T20:04:46Z2019-01-25T20:04:46Z201817426588http://hdl.handle.net/20.500.12442/2531In computed tomography imaging, brain hematoma (BH) segmentation is a very challenging process due to a high variability of BH morphology, low contrast and noisy images. Because of this, BH segmentation is an open problem. In order to approach this problem, we propose an automatic technique, named nonlinear technique (NLT), based on a thresholding method, noise suppression filters, intelligent operators, a clustering strategy and a binary morphological operator. NLT performance is assessed by Jaccard's similarity index (JSI) used to compare automatic and manual BH segmentations. This assessment allows developing a tuning process for establishing the optimal parameters of each of the algorithms which constitute the proposed technique. The results indicate a good correlation, based on JSI, between the manual segmentations and the automatic ones. Finally, the BH volume is generated considering the automatic segmentation. This volume indicates whether or not the patient must undergo a surgical intervention for BH treatment.engIOP PublishingJournal of Physics: Conference SeriesVol. 1126, No. 012071 (2018)doi :10.1088/1742-6596/1126/1/012071Brain hematoma computational segmentationarticlehttp://purl.org/coar/resource_type/c_6501Stippler M 2016 Craniocerebral trauma Bradley's Neurology in Clinical Practice vol 2 ed Robert B. Daroff, Joseph Jankovic, John C Mazziotta, Scott L Pomeroy (Philadelphia: Elsevier) chapter 62 pp 867– 880Maier A, Wigstrom L, Hofmann H G, Hornegger J, Zhu L, Strobel N and Fahrig R 2011 Threedimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT Medical Physics 38 5896Li-Hong J and Wu M 2010 MRI brain lesion image detection based on colour converted k-means clustering segmentation Measurement 43 941Roy S, Nag S, Bandyopadhyay S K, Bhattacharyya D and Kim T H 2015 Automated brain haemorrhage lesion segmentation and classification from MR image using an innovative composite method Journal of Theoretical and Applied Information Technology 78 34Kamnitsas K, Lediga C, Newcombeb V, Simpsonb J, Kaneb A, Menonb D, Rueckerta D, Glockera B 2017 Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal 23 1603Liao C, Xiao F, Wong J, Chiang I 2010 Computer-aided diagnosis of intracranial hematoma with brain deformation on computed tomography. Comput Med Imaging Graph 34 563Vera M, Martinez L J, Huerfano Y, Molina V, Vargas S, Vera M, Salazar W, Rodriguez J, Rodriguez R, Chacon G, Isaza A, Saenz F, Glevez E and Salazar J 2018 Automatic segmentation of subdural hematomas using a computational technique based on smart operators Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (Porto) 1 1Sharma B and Venugopalan K 2012 Automatic segmentation of brain ct scan image to identify hemorrhages. International Journal of Computer Applications 40 1Al-Ayyoub M, Alawad D, Al-Darabsah K and Aljarrah I 2013. Automatic detection and classification of brain hemorrhages. WSEAS Transactions on Computers 10 395Vera M, Bravo A and Medina R 2011 Improving ventricle detection in 3D cardiac multislice computerized tomography images Communications in Computer and Information Science 229 170Real R and Vargas J 1996. The probabilistic basis of Jaccard's index of similarity Syst. Biol 45 380Hu T, Yan L, Yan P, Wang X and Yue G 2016 Assessment of the ABC/2 method of epidural hematoma volume measurement as compared to computer-assisted planimetric analysis Biological Research for Nursing 18 5ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf705519https://bonga.unisimon.edu.co/bitstreams/2e4d7340-1ce0-4b13-ae6c-f7f76ee6fefd/downloadff151921e182650ac3ba59fdab190c5dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/37edeb09-f8b7-4967-885e-3465905f1e13/download3fdc7b41651299350522650338f5754dMD52TEXTBrain hematoma computational segmentation.pdf.txtBrain hematoma computational segmentation.pdf.txtExtracted texttext/plain16423https://bonga.unisimon.edu.co/bitstreams/b09fb770-b25f-4ca0-9021-63b3b378e666/downloadd5dce208918c0459c27f161439916e7dMD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain16917https://bonga.unisimon.edu.co/bitstreams/09ae362c-a9b9-4e0d-8ab7-7fe246d4fad4/downloadaf23d05c2f096629656fb47a2bba359dMD55THUMBNAILBrain hematoma computational segmentation.pdf.jpgBrain hematoma computational segmentation.pdf.jpgGenerated Thumbnailimage/jpeg1270https://bonga.unisimon.edu.co/bitstreams/8bc2fb4e-a824-48a4-9b93-46e59ef65637/downloada8bbbdb18cfea85e056f9af36495c66cMD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3179https://bonga.unisimon.edu.co/bitstreams/b273e2ca-3b20-4a88-b936-fead1254b35f/download0855009b3fcd86fdeffbf0f30257ed6fMD5620.500.12442/2531oai:bonga.unisimon.edu.co:20.500.12442/25312024-07-25 03:03:52.522open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=