Semi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clustering

Abstract: A semiautomatic technique to detect the aortic root in three-dimensional multi-slice computerised tomography images is proposed. Three steps are considered: conditioning, filtering, and detection. The conditioning is based on multi-planar reconstruction and it is required for reformatting...

Full description

Autores:
Valbuena, Oscar
Vera, Miguel Ángel
Del Mar, Atilio
Roa, Felida Andreina
Bravo, Antonio José
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/8378
Acceso en línea:
https://hdl.handle.net/20.500.12442/8378
https://doi.org/10.1504/IJBET.2021.114811
Palabra clave:
Human heart
Aortic root
Multi-slice computerised tomography
MSCT
Segmentation
Similarity enhancement
Weighted median
Unsupervised clustering
Rights
embargoedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_312b29ee9c19ba813db1fdfd9776fd8d
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/8378
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Semi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clustering
title Semi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clustering
spellingShingle Semi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clustering
Human heart
Aortic root
Multi-slice computerised tomography
MSCT
Segmentation
Similarity enhancement
Weighted median
Unsupervised clustering
title_short Semi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clustering
title_full Semi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clustering
title_fullStr Semi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clustering
title_full_unstemmed Semi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clustering
title_sort Semi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clustering
dc.creator.fl_str_mv Valbuena, Oscar
Vera, Miguel Ángel
Del Mar, Atilio
Roa, Felida Andreina
Bravo, Antonio José
dc.contributor.author.none.fl_str_mv Valbuena, Oscar
Vera, Miguel Ángel
Del Mar, Atilio
Roa, Felida Andreina
Bravo, Antonio José
dc.subject.eng.fl_str_mv Human heart
Aortic root
Multi-slice computerised tomography
MSCT
Segmentation
Similarity enhancement
Weighted median
Unsupervised clustering
topic Human heart
Aortic root
Multi-slice computerised tomography
MSCT
Segmentation
Similarity enhancement
Weighted median
Unsupervised clustering
description Abstract: A semiautomatic technique to detect the aortic root in three-dimensional multi-slice computerised tomography images is proposed. Three steps are considered: conditioning, filtering, and detection. The conditioning is based on multi-planar reconstruction and it is required for reformatting the information to orthogonal planes to the aortic root. During the filtering, three nonlinear filters based on similarity enhancement, median and weighted median are considered to reduce noise and enhance the reformatted images. In the detection, the filtered volumes are processed with a clustering technique. Dice score, the point-to-mesh and the Hausdorff distances are used to compare the obtained results with respect to ground truth traced by a cardiologist. A clinical dataset of 90 volumes from 45 patients is used to validate the technique. The maximum Dice score (0.92), the minimum average point-to-mesh distance (0.96 mm) and the minimum average Hausdorff distance (4.80 mm) are obtained during preprocessed volumes segmentation using similarity enhancement.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-14T21:11:34Z
dc.date.available.none.fl_str_mv 2021-09-14T21:11:34Z
dc.date.issued.none.fl_str_mv 2021
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.issn.none.fl_str_mv 17526426
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/8378
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1504/IJBET.2021.114811
identifier_str_mv 17526426
url https://hdl.handle.net/20.500.12442/8378
https://doi.org/10.1504/IJBET.2021.114811
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv Inderscience Publishers
dc.source.eng.fl_str_mv International Journal of Biomedical Engineering and Technology (IJBET)
dc.source.none.fl_str_mv Vol. 35 N° 4 (2021)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/67e1ec56-b4b3-4e70-98c0-0f963188f201/download
https://bonga.unisimon.edu.co/bitstreams/4fd29ae3-7214-41e1-952d-e96a6da5aeb8/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076106051944448
spelling Valbuena, Oscar262b3f8e-b422-4786-b036-2aaa5b963f84Vera, Miguel Ángelf883adfa-3a21-4326-9ba7-6c6b33f481c4Del Mar, Atilioa0cef2b7-97d7-4574-8c8d-ed84d44f7d17Roa, Felida Andreina9b667e73-e275-475b-b6c0-6a93df00c078Bravo, Antonio Joséfb9a908c-ea86-4f44-b5ff-615f5a6b4cab2021-09-14T21:11:34Z2021-09-14T21:11:34Z202117526426https://hdl.handle.net/20.500.12442/8378https://doi.org/10.1504/IJBET.2021.114811Abstract: A semiautomatic technique to detect the aortic root in three-dimensional multi-slice computerised tomography images is proposed. Three steps are considered: conditioning, filtering, and detection. The conditioning is based on multi-planar reconstruction and it is required for reformatting the information to orthogonal planes to the aortic root. During the filtering, three nonlinear filters based on similarity enhancement, median and weighted median are considered to reduce noise and enhance the reformatted images. In the detection, the filtered volumes are processed with a clustering technique. Dice score, the point-to-mesh and the Hausdorff distances are used to compare the obtained results with respect to ground truth traced by a cardiologist. A clinical dataset of 90 volumes from 45 patients is used to validate the technique. The maximum Dice score (0.92), the minimum average point-to-mesh distance (0.96 mm) and the minimum average Hausdorff distance (4.80 mm) are obtained during preprocessed volumes segmentation using similarity enhancement.pdfengInderscience PublishersAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfInternational Journal of Biomedical Engineering and Technology (IJBET)Vol. 35 N° 4 (2021)Human heartAortic rootMulti-slice computerised tomographyMSCTSegmentationSimilarity enhancementWeighted medianUnsupervised clusteringSemi-automated detection of aortic root in human heart MSCT images using nonlinear filtering and unsupervised clusteringinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Aggarwal, S.R., Clavel, M.A., Messika-Zeitoun, D., Cueff, C., Malouf, J., Araoz, P.A., Mankad, R., Michelena, H., Vahanian, A. and Enriquez-Sarano, M. (2013) ‘Sex differences in aortic valve calcification measured by multidetector computed tomography in aortic stenosis’, Circulation: Cardiovascular Imaging, Vol. 6, No. 1, pp.40–47.Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L. and Erickson, B.J. (2017) ‘Deep learning for brain MRI segmentation: state of the art and future directions’, Journal of Digital Imaging, Vol. 30, No. 4, pp.449–459.Arce, G.R., Bacca, J. and Paredes, J.L. (2009) ‘Nonlinear filtering for image analysis and enhancement’, in Bovik, A. (Ed.): The Essential Guide to Image Processing, 2nd ed., pp.263–291, Academic Press, BostonAshok, V. and Murugesan, G. (2017) ‘Detection of retinal area from scanning laser ophthalmoscope images (SLO) using deep neural network’, Int. J. of Biomedical Engineering and Technology, Vol. 23, Nos. 2–4, pp.303–314.Ballard, D. (1981) ‘Generalizing the Hough transform to detect arbitrary shapes’, Pattern Recognition, Vol. 13, No. 2, pp.111–122.Barrett, J. and Keat, N. (2004) ‘Artifacts in CT: recognition and avoidance1’, Radiographics, Vol. 24, No. 6, pp.1679–1691Bravo, A. and Medina, R. (2008) ‘An unsupervised clustering framework for automatic segmentation of left ventricle cavity in human heart angiograms’, Computerized Medical Imaging and Graphics, Vol. 32, No. 5, pp.396–408.Bravo, A., Clemente, J., Vera, M. and Medina, R. (2010) ‘A hybrid boundary-region left ventricle segmentation in computed tomography’, in VISSAPP, Angers, France. pp.107–114.Bravo, A., Vera, M., Garreau, M. and Medina, R. (2011) ‘Three-dimensional segmentation of ventricular heart chambers from multi-slice computerized tomography: an hybrid approach’, in DICTAP, Springer, Vol. 166 of CCIS, pp.287–301.Canny, J. (1986) ‘A computational approach to edge detection’, IEEE Transaction on Pattern Recognition Analysis and Machine Inteligence PAMI, Vol. 8, No. 6, pp.679–698.Cribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., Derumeaux, G., Anselme, F., Laborde, F. and Leon, M.B. (2002) ‘Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description’, Circulation, Vol. 106, No. 24, pp.3006–3008.Dice, L. (1945) ‘Measures of the amount of ecologic association between species’, Ecology, Vol. 26, No. 3, pp.297–302.Elattar, M., Wiegerinck, E., Planken, R., Vanbavel, E., Van Assen, H., Baan, J. and Marquering, H. (2014) ‘Automatic segmentation of the aortic root in CT angiography of candidate patients for transcatheter aortic valve implantation’, Medical & Biological Engineering & Computing, Vol. 52, No. 7, pp.611–618.Faletra, F., Pandian, N. and Ho, S. (2008) Anatomy of the Heart by Multislice Computed Tomography, Wiley-Blackwell, West Sussex, UK.Fauci, A.S. (2008) Harrison’s Principles of Internal Medicine, McGraw-Hill, New York.Fernandez-Perez, N., Gonzalez-Lopez, S., Rodriguez-Rivero, C., Ciobanu, C. and Saint-Pierre, G. (2012) ‘FE analysis applied for validation of a biostable aortic valve replacement device: stent and leaflet material selection’, Int. J. of Biomedical Engineering and Technology, Vol. 9, No. 4, pp.378–394.Feuchtner, G.M., Stolzmann, P., Dichtl, W., Schertler, T., Bonatti, J., Scheffel, H., Mueller, S., Plass, A., Mueller, L., Bartel, T., Wolf, F. and Alkadhi, H. (2009) ‘Multislice computed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings’, Journal of the American College of Cardiology, Vol. 53, pp.436–444.Flohr, T.G., Schaller, S., Stierstorfer, K., Bruder, H., Ohnesorge, B.M. and Schoepf, U.J. (2005) Multi-detector row CT systems and image – reconstruction techniques’, Radiology, Vol. 235, No. 5, pp.756–773.Ghesu, F.C., Krubasik, E., Georgescu, B., Singh, V., Zheng, Y., Hornegger, J. and Comaniciu, D., (2016) ‘Marginal space deep learning: Efficient architecture for volumetric image parsing’, IEEE Transactions on Medical Imaging, Vol. 35, No. 5, pp.1217–1228.Ginat, D.T. and Gupta, R. (2014) ‘Advances in computed tomography imaging technology’, Annual Review of Biomedical Engineering, Vol. 16, No. 1, pp.431–453.Gonzalez, R. and Woods, R. (2006) Digital Image Processing, 3rd ed., Prentice-Hall,New Jersey, USA.Grbic, S., Ionasec, R., Vitanovski, D., Voigt, I., Wang, Y., Georgescu, B., Navab, N. and Comaniciu, D. (2012) ‘Complete valvular heart apparatus model from 4D cardiac CT’, Medical Image Analysis, Vol. 16, No. 5, pp.1003–1014.Grbic, S., Mansi, T., Ionasec, R., Voigt, I., Houle, H., John, M., Schoebinger, M., Navab, N. and Comaniciu, D. (2013) ‘Image-based computational models for TAVI planning: from CT images to implant deployment’, in Mori, K., Sakuma, I., Sato, Y., Barillot, C. and Navab, N. (Eds.): Medical Image Computing and Computer-Assisted Intervention, pp.395–402, Springer Berlin Heidelberg.Grube, E., Laborde, J.C., Zickmann, B., Gerckens, U., Felderhoff, T., Sauren, B., Bootsveld, A., Buellesfeld, L. and Iversen, S. (2005) ‘First report on a human percutaneous transluminal implantation of a self-expanding valve prosthesis for interventional treatment of aortic valve stenosis’, Catheterization and Cardiovascular Interventions, Vol. 66, No. 4, pp.465–469.Gupta, S., Chakarvarti, S. and Zaheeruddin (2016) ‘Medical image registration based on fuzzy c-means clustering segmentation approach using SURF’, Int. J. of Biomedical Engineering and Technology, Vol. 20, No. 1, pp.33–50.Guyton, A. and Hall, J. (2006) Textbook of Medical Physiology, Elsevier Saunders, USA.Haralick, R. and Shapiro, L. (1992) Computer and Robot Vision, Vol. 1, Addison-Wesley, USA.Ho, S.Y. (2002) ‘Anatomy of the mitral valve’, Heart, Vol. 88, No. 4, pp.iv5–iv10.Ho, S.Y. (2009) ‘Structure and anatomy of the aortic root’, European Heart Journal – Cardiovascular Imaging, Vol. 10, No. 1, pp.i3–i10.Huttenlocher, D., Klanderman, G. and Rucklidge, W. (1993) ‘Comparing images using the Hausdorff distance’, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 9, pp.850–863.Ibáñez, L., Schroeder, W., Ng, L. and Cates, J. (2003) The ITK Software Guide, Kitware, USA.Ji, Z.X., Sun, Q.S. and Xia, D.S. (2011) ‘A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image’, Computerized Medical Imaging and Graphics, Vol. 35, No. 5, pp.383–397.Kirisli, H., Schaap, M., Klein, S., Papadopoulou, S., Bonardi, M., Chen, C., Weustink, A., Mollet, N., Vonken, E.P.A., Van der Geest, R., Van Walsum, T. and Niessen, W. (2010) ‘Evaluation of a multi-atlas based method for segmentation of cardiac CTA data: a large-scale, multi-center and multi-vendor study’, Medical Physics, Vol. 37, No. 12, pp.6279–6292.Lorenz, C. and Von Berg, J. (2006) ‘A comprehensive shape model of the heart’, Medical Image Analysis, Vol. 10, No. 4, pp.657–670.Manghat, N., Rachapalli, V., Van Lingen, R., Veitch, A., Roobottom, C. and Morgan-Hughes, G. (2008) ‘Imaging the heart valves using ECG-gated 64-detector row cardiac CT’, The British Journal of Radiology, Vol. 81, No. 964, pp.275–290.MPPS (2012) Anuario deMortalidad, Technical Report.Ministerio del Poder Popular para la Salud, República Bolivariana de Venezuela, Caracas.Pauwels, E. and Frederix, G. (1999) ‘Finding salient regions in images: non-parametric clustering for image segmentation and grouping’, Computer Vision and Image Understanding, Vol. 18, Nos. 1–2, pp.73–85.Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E. and Nielsen, M. (2013) ‘Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network’, in Mori, K., Sakuma, I., Sato, Y., Barillot, C. and Navab, N. (Eds.): Medical Image Computing and Computer-Assisted Intervention, Springer Berlin Heidelberg. pp.246–253.Pratt, W. (2007) Digital Image Processing, John Wiley Sons, Los Altos.Primak, A., McCollough, C., Bruesewitz, M., Zhang, J. and Fletcher, J. (2006) ‘Relationship between noise, dose, and pitch in cardiac multi-detector row CT’, Radiographics, Vol. 26, No. 6, pp.1785–1794.Rogers, J.H. and Bolling, S.F. (2009) ‘The tricuspid valve: current perspective and evolving management of tricuspid regurgitation’, Circulation, Vol. 119, No. 20, pp.2718–2725.Rubin, G.D. (2014) ‘Computed tomography: revolutionizing the practice of medicine for 40 years’, Radiology, Vol. 273, Suppl. 2, pp.S45–S74.Ryan, R., Abbara, S., Colen, R.R., Arnous, S., Quinn, M., Cury, R.C. and Dodd1, J.D. (2008) ‘Cardiac valve disease: spectrum of findings on cardiac 64-MDCT’, American Journal of Roentgenology, Vol. 190, No. 5, pp.W294–W303.Sharma, N. and Aggarwal, L. (2010) ‘Automated medical image segmentation techniques’, Journal of Medical Physics, Vol. 35, No. 1, pp.3–14.Sharma, N., Ray, A., Sharma, S., Shukla, K., Pradhan, S. and Aggarwal, L. (2008) ‘Segmentation and classification of medical images using texture-primitive features: application of BAM-type artificial neural network’, Journal of Medical Physics, Vol. 33, No. 3, pp.119–126.Stamm, C., Anderson, R.H. and Ho, S.Y. (1998) ‘Clinical anatomy of the normal pulmonary root compared with that in isolated pulmonary valvular stenosis 1’, Journal of the American College of Cardiology, Vol. 31, No. 6, pp.1420–1425.Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B. and Liang, J. (2016) ‘Convolutional neural networks for medical image analysis: full training or fine tuning?’, IEEE Transactions on Medical Imaging, Vol. 35, No. 5, pp.1299–1312.Watanabe, Y., Chevalier, B., Hayashida, K., Leong, T., Bouvier, E., Arai, T., Farge, A., Hovasse, T., Garot, P., Cormier, B., Morice, M.C. and Lefèvre, T. (2015) ‘Comparison of multislice computed tomography findings between bicuspid and tricuspid aortic valves before and after transcatheter aortic valve implantation’, Catheterization and Cardiovascular Interventions, Vol. 86, No. 2, pp.323–330.WHO (2011) Global Status Report on Non Communicable Diseases, The World Health Report 2010 Geneva, World Health Organization.Yin, L., Yang, R., Gabbouj, M. and Neuvo, Y. (1996) ‘Weighted median filters: a tutorial’, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 43, No. 3, pp.157–192.Zheng, Y., John, M., Liao, R., Nöttling, A., Boese, J.M., Kempfert, J., Walther, T., Brockmann, G. and Comaniciu, D. (2012) ‘Automatic aorta segmentation and valve landmark detection in C-arm CT for transcatheter aortic valve implantation’, IEEE Transaction on Medical Imaging, Vol. 31, No. 12, pp.2307–2321.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/67e1ec56-b4b3-4e70-98c0-0f963188f201/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/4fd29ae3-7214-41e1-952d-e96a6da5aeb8/download733bec43a0bf5ade4d97db708e29b185MD5320.500.12442/8378oai:bonga.unisimon.edu.co:20.500.12442/83782024-08-14 21:52:23.633http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalmetadata.onlyhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u