NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations

A relationship between metabolic syndrome and cognitive impairment has been evidenced across research; however, conflicting results have been observed. A cross-sectional study was conducted on 3179 adults older than 60 from the 2011–2014 National Health and Nutrition Examination Survey (NHANES) to a...

Full description

Autores:
Díaz-Camargo, Edgar
Hernández-Lalinde, Juan
Sánchez-Rubio, María
Chaparro-Suárez, Yudy
Álvarez-Caicedo, Liseth
Fierro-Zarate, Alexandra
Gravini-Donado, Marbel
García-Pacheco, Henry
Rojas-Quintero, Joselyn
Bermúdez, Valmore
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/13162
Acceso en línea:
https://hdl.handle.net/20.500.12442/13162
https://doi.org/10.3390/ijerph20075257
Palabra clave:
Metabolic syndrome
Cognitive impairment
Older adults
NHANES
Obesity
Hyperglycemia
High triglycerides
Low HDL–cholesterol
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_2bfd70fb508e3a3a69f15f3475005703
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/13162
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations
title NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations
spellingShingle NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations
Metabolic syndrome
Cognitive impairment
Older adults
NHANES
Obesity
Hyperglycemia
High triglycerides
Low HDL–cholesterol
title_short NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations
title_full NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations
title_fullStr NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations
title_full_unstemmed NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations
title_sort NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations
dc.creator.fl_str_mv Díaz-Camargo, Edgar
Hernández-Lalinde, Juan
Sánchez-Rubio, María
Chaparro-Suárez, Yudy
Álvarez-Caicedo, Liseth
Fierro-Zarate, Alexandra
Gravini-Donado, Marbel
García-Pacheco, Henry
Rojas-Quintero, Joselyn
Bermúdez, Valmore
dc.contributor.author.none.fl_str_mv Díaz-Camargo, Edgar
Hernández-Lalinde, Juan
Sánchez-Rubio, María
Chaparro-Suárez, Yudy
Álvarez-Caicedo, Liseth
Fierro-Zarate, Alexandra
Gravini-Donado, Marbel
García-Pacheco, Henry
Rojas-Quintero, Joselyn
Bermúdez, Valmore
dc.subject.eng.fl_str_mv Metabolic syndrome
Cognitive impairment
Older adults
NHANES
Obesity
Hyperglycemia
High triglycerides
Low HDL–cholesterol
topic Metabolic syndrome
Cognitive impairment
Older adults
NHANES
Obesity
Hyperglycemia
High triglycerides
Low HDL–cholesterol
description A relationship between metabolic syndrome and cognitive impairment has been evidenced across research; however, conflicting results have been observed. A cross-sectional study was conducted on 3179 adults older than 60 from the 2011–2014 National Health and Nutrition Examination Survey (NHANES) to analyze the relationship between metabolic syndrome and cognitive impairment. In our results, we found that adults with abdominal obesity, high triglycerides, and low HDL cholesterol had 4.39 fewer points in the CERAD immediate recall test than adults without any metabolic syndrome factors [Beta = −4.39, SE = 1.32, 17.75 (1.36) vs. 22.14 (0.76)]. In addition, people with this metabolic syndrome combination exhibited 2.39 fewer points in the CERAD delayed recall test than those without metabolic syndrome criteria [Beta = −2.39, SE = 0.46, 4.32 (0.49) vs. 6.71 (0.30)]. It was also found that persons with high blood pressure, hyperglycemia, and low HDL–cholesterol levels reached 4.11 points less in the animal fluency test than people with no factors [Beta = −4.11, SE = 1.55, 12.67 (2.12) vs. 16.79 (1.35)]. These findings suggest that specific metabolic syndrome combinations are essential predictors of cognitive impairment. In this study, metabolic syndrome combinations that included obesity, fasting hyperglycemia, high triglycerides, and low HDL–cholesterol were among the most frequent criteria observed.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-18T16:19:52Z
dc.date.available.none.fl_str_mv 2023-08-18T16:19:52Z
dc.date.issued.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.citation.eng.fl_str_mv Díaz-Camargo, E., Hernández-Lalinde, J., Sánchez-Rubio, M., Chaparro-Suárez, Y., Álvarez-Caicedo, L., Fierro-Zarate, A., Gravini-Donado, M., García-Pacheco, H., Rojas-Quintero, J., & Bermúdez, V. (2023). NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations. International Journal of Environmental Research and Public Health, 20(7), 5257. https://doi.org/10.3390/ijerph20075257
dc.identifier.issn.none.fl_str_mv 16604601
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/13162
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/ijerph20075257
identifier_str_mv Díaz-Camargo, E., Hernández-Lalinde, J., Sánchez-Rubio, M., Chaparro-Suárez, Y., Álvarez-Caicedo, L., Fierro-Zarate, A., Gravini-Donado, M., García-Pacheco, H., Rojas-Quintero, J., & Bermúdez, V. (2023). NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations. International Journal of Environmental Research and Public Health, 20(7), 5257. https://doi.org/10.3390/ijerph20075257
16604601
url https://hdl.handle.net/20.500.12442/13162
https://doi.org/10.3390/ijerph20075257
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.spa.fl_str_mv MDPI
dc.source.eng.fl_str_mv International Journal of Environmental Research and Public Health
dc.source.none.fl_str_mv Vol. 20 Issue 7 (2023)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/cfa2c13f-c789-4343-8294-db630ecf26f9/download
https://bonga.unisimon.edu.co/bitstreams/fad64b39-6f1f-4de3-a8d3-93393a3afa16/download
https://bonga.unisimon.edu.co/bitstreams/2b49eaf0-aa89-47dc-b287-166419dca589/download
https://bonga.unisimon.edu.co/bitstreams/3dbac010-5f62-4530-9a33-4e0c31da4086/download
https://bonga.unisimon.edu.co/bitstreams/ef9e7564-f0d9-4c73-86b6-69a23c20c572/download
https://bonga.unisimon.edu.co/bitstreams/462ab407-490f-4afc-b222-0384f79ac0d7/download
https://bonga.unisimon.edu.co/bitstreams/e8bcffa8-490e-4dd9-a106-52f730778269/download
bitstream.checksum.fl_str_mv 700b6c5356d19deb7fced42d8467fab0
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
c7a203481726e89319e3e55dff95f1fe
c7a203481726e89319e3e55dff95f1fe
e83e59e53f585d6335df37b3b287495a
e83e59e53f585d6335df37b3b287495a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076094319427584
spelling Díaz-Camargo, Edgare056554f-7c70-4102-b9c6-bad4ba6afb39Hernández-Lalinde, Juan5842fe68-7639-4999-b807-d7cea1164b1cSánchez-Rubio, María083e8ee6-94ce-4b07-87df-21ae9a7cc713Chaparro-Suárez, Yudy5d07abf5-e015-44e3-ae29-93a325d4bf2cÁlvarez-Caicedo, Liseth198da506-4370-4843-9a21-b9271789bf76Fierro-Zarate, Alexandra9fb346ef-e101-4ac0-ba55-a08d486e6e2aGravini-Donado, Marbelf5216d16-f0e2-4742-a70b-587021000208García-Pacheco, Henry784e8766-d84b-4be0-8e05-ed7c7b86b393Rojas-Quintero, Joselyn1fcd6ac1-186e-465c-a5fd-3c25563275abBermúdez, Valmore29f9aa18-16a4-4fd3-8ce5-ed94a0b8663a2023-08-18T16:19:52Z2023-08-18T16:19:52Z2023Díaz-Camargo, E., Hernández-Lalinde, J., Sánchez-Rubio, M., Chaparro-Suárez, Y., Álvarez-Caicedo, L., Fierro-Zarate, A., Gravini-Donado, M., García-Pacheco, H., Rojas-Quintero, J., & Bermúdez, V. (2023). NHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinations. International Journal of Environmental Research and Public Health, 20(7), 5257. https://doi.org/10.3390/ijerph2007525716604601https://hdl.handle.net/20.500.12442/13162https://doi.org/10.3390/ijerph20075257A relationship between metabolic syndrome and cognitive impairment has been evidenced across research; however, conflicting results have been observed. A cross-sectional study was conducted on 3179 adults older than 60 from the 2011–2014 National Health and Nutrition Examination Survey (NHANES) to analyze the relationship between metabolic syndrome and cognitive impairment. In our results, we found that adults with abdominal obesity, high triglycerides, and low HDL cholesterol had 4.39 fewer points in the CERAD immediate recall test than adults without any metabolic syndrome factors [Beta = −4.39, SE = 1.32, 17.75 (1.36) vs. 22.14 (0.76)]. In addition, people with this metabolic syndrome combination exhibited 2.39 fewer points in the CERAD delayed recall test than those without metabolic syndrome criteria [Beta = −2.39, SE = 0.46, 4.32 (0.49) vs. 6.71 (0.30)]. It was also found that persons with high blood pressure, hyperglycemia, and low HDL–cholesterol levels reached 4.11 points less in the animal fluency test than people with no factors [Beta = −4.11, SE = 1.55, 12.67 (2.12) vs. 16.79 (1.35)]. These findings suggest that specific metabolic syndrome combinations are essential predictors of cognitive impairment. In this study, metabolic syndrome combinations that included obesity, fasting hyperglycemia, high triglycerides, and low HDL–cholesterol were among the most frequent criteria observed.pdfengMDPIAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Environmental Research and Public HealthVol. 20 Issue 7 (2023)Metabolic syndromeCognitive impairmentOlder adultsNHANESObesityHyperglycemiaHigh triglyceridesLow HDL–cholesterolNHANES 2011–2014 Reveals Decreased Cognitive Performance in U.S. Older Adults with Metabolic Syndrome Combinationsinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1El-Tallawy, H.N.; Saadeldin, H.M.; Ezzeldin, A.M.; Tohamy, A.M.; Eltellawy, S.; Bathalath, A.M.; Shehab, M.M. Genetic, Clinical, and Biochemical Aspects of Patients with Alzheimer Disease. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 24.ohnson, S.C.; Koscik, R.L.; Jonaitis, E.M.; Clark, L.R.; Mueller, K.D.; Berman, S.E.; Bendlin, B.B.; Engelman, C.D.; Okonkwo, O.C.; Hogan, K.J.; et al. The Wisconsin Registry for Alzheimer’s Prevention: A Review of Findings and Current Directions. Alzheimers Dement. 2018, 10, 130–142Wang, J.; Gu, B.J.; Masters, C.L.; Wang, Y.-J. A Systemic View of Alzheimer’s Disease—Insights from Amyloid-β Metabolism beyond the Brain. Nat. Rev. Neurol. 2017, 13, 612–623. [[PubMedBennett, D.A.; Wilson, R.S.; Boyle, P.A.; Buchman, A.S.; Schneider, J.A. Relation of Neuropathology to Cognition in Persons without Cognitive Impairment. Ann. Neurol. 2012, 72, 599–609.Katzman, R.; Terry, R.; DeTeresa, R.; Brown, T.; Davies, P.; Fuld, P.; Renbing, X.; Peck, A. Clinical, Pathological, and Neurochemical Changes in Dementia: A Subgroup with Preserved Mental Status and Numerous Neocortical Plaques. Ann. Neurol. 1988, 23, 138–14Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.J.; Visser, P.J.; Amyloid Biomarker Study Group; Aalten, P.; Aarsland, D.; et al. Prevalence of Cerebral Amyloid Pathology in Persons without Dementia: A Meta-Analysis. JAMA 2015, 313, 1924–1938.Bennett, D.A. Mixed Pathologies and Neural Reserve: Implications of Complexity for Alzheimer Disease Drug Discovery. PLoS Med. 2017, 14, e1002256. [Stern, Y. What Is Cognitive Reserve? Theory and Research Application of the Reserve Concept. J. Int. Neuropsychol. Soc. 2002, 8, 448–460.Atamna, H.; Tenore, A.; Lui, F.; Dhahbi, J.M. Organ Reserve, Excess Metabolic Capacity, and Aging. Biogerontology 2018, 19, 171–184Wang, S.; Qin, L. Homeostatic Medicine: A Strategy for Exploring Health and Disease. Curr. Med. 2022, 1, 16.Iliodromiti, S.; Iglesias Sanchez, C.; Messow, C.-M.; Cruz, M.; Garcia Velasco, J.; Nelson, S.M. Excessive Age-Related Decline in Functional Ovarian Reserve in Infertile Women: Prospective Cohort of 15,500 Women. J. Clin. Endocrinol. Metab. 2016, 101, 3548–3554Polverino, A.; Sorrentino, P.; Pesoli, M.; Mandolesi, L. Nutrition and Cognition across the Lifetime: An Overview on Epigenetic Mechanisms. AIMS Neurosci. 2021, 8, 448–476Rodgers, G.P.; Collins, F.S. Precision Nutrition—The Answer to “What to Eat to Stay Healthy”. JAMA 2020, 324, 735–736Prokopidis, K.; Giannos, P.; Ispoglou, T.; Witard, O.C.; Isanejad, M. Dietary Fiber Intake Is Associated with Cognitive Function in Older Adults: Data from the National Health and Nutrition Examination Survey. Am. J. Med. 2022, 135, E257–E262. [Mao, X.-Y.; Yin, X.-X.; Guan, Q.-W.; Xia, Q.-X.; Yang, N.; Zhou, H.-H.; Liu, Z.-Q.; Jin, W.-L. Dietary Nutrition for Neurological Disease Therapy: Current Status and Future Directions. Pharmacol. Ther. 2021, 226, 107861.Foret, J.T.; Oleson, S.; Hickson, B.; Valek, S.; Tanaka, H.; Haley, A.P. Metabolic Syndrome and Cognitive Function in Midlife. Arch. Clin. Neuropsychol. 2021, 36, 897–907ao, X.-Y.; Yin, X.-X.; Guan, Q.-W.; Xia, Q.-X.; Yang, N.; Zhou, H.-H.; Liu, Z.-Q.; Jin, W.-L. Dietary Nutrition for Neurological Disease Therapy: Current Status and Future Directions. Pharmacol. Ther. 2021, 226, 107861. [GoogleForet, J.T.; Oleson, S.; Hickson, B.; Valek, S.; Tanaka, H.; Haley, A.P. Metabolic Syndrome and Cognitive Function in Midlife. Arch. Clin. Neuropsychol. 2021, 36, 897–907.Wooten, T.; Ferland, T.; Poole, V.; Milberg, W.; McGlinchey, R.; DeGutis, J.; Esterman, M.; Leritz, E. Metabolic Risk in Older Adults Is Associated with Impaired Sustained Attention. Neuropsychology 2019, 33, 947–955.Frazier, D.T.; Bettcher, B.M.; Dutt, S.; Patel, N.; Mungas, D.; Miller, J.; Green, R.; Kramer, J.H. Relationship between Insulin-Resistance Processing Speed and Specific Executive Function Profiles in Neurologically Intact Older Adults. J. Int. Neuropsychol. Soc. 2015, 21, 622–628. [Bahchevanov, K.M.; Dzhambov, A.M.; Chompalov, K.A.; Massaldjieva, R.I.; Atanassova, P.A.; Mitkov, M.D. Contribution of Components of Metabolic Syndrome to Cognitive Performance in Middle-Aged Adults. Arch. Clin. Neuropsychol. 2021, 36, 498–506. [Mone, P.; Gambardella, J.; Lombardi, A.; Pansini, A.; De Gennaro, S.; Leo, A.L.; Famiglietti, M.; Marro, A.; Morgante, M.; Frullone, S.; et al. Correlation of Physical and Cognitive Impairment in Diabetic and Hypertensive Frail Older Adults. Cardiovasc. Diabetol. 2022, 21, 10.Mundell, N.L.; Sethi, P.; Anstey, K.J.; Macpherson, H.; Dunstan, D.W.; Fraser, S.F.; Daly, R.M. The Influence of Adiposity on the Interactions between Strength, Physical Function and Cognition among Older Adults in the Australian Diabetes, Obesity, and Lifestyle (AusDiab) Study. BMC Geriatr. 2022, 22, 357. [An, Y.; Zhang, X.; Wang, Y.; Wang, Y.; Liu, W.; Wang, T.; Qin, Z.; Xiao, R. Longitudinal and Nonlinear Relations of Dietary and Serum Cholesterol in Midlife with Cognitive Decline: Results from EMCOA Study. Mol. Neurodegener. 2019, 14, 51.Ihle, A.; Gouveia, É.R.; Gouveia, B.R.; Freitas, D.L.; Jurema, J.; Tinôco, M.A.; Kliegel, M. High-Density Lipoprotein Cholesterol Level Relates to Working Memory, Immediate and Delayed Cued Recall in Brazilian Older Adults: The Role of Cognitive Reserve. Dement. Geriatr. Cogn. Disord. 2017, 44, 84–91. [Parthasarathy, V.; Frazier, D.T.; Bettcher, B.M.; Jastrzab, L.; Chao, L.; Reed, B.; Mungas, D.; Weiner, M.; DeCarli, C.; Chui, H.; et al. Triglycerides Are Negatively Correlated with Cognitive Function in Nondemented Aging Adults. Neuropsychology 2017, 31, 682–688. [Mizuhara, R.; Mitaki, S.; Takamura, M.; Abe, S.; Onoda, K.; Yamaguchi, S.; Nagai, A. Pulse Pressure Is Associated with Cognitive Performance in Japanese Non-Demented Population: A Cross-Sectional Study. BMC Neurol. 2022, 22, 137. [Newcombe, E.A.; Camats-Perna, J.; Silva, M.L.; Valmas, N.; Huat, T.J.; Medeiros, R. Inflammation: The Link between Comorbidities, Genetics, and Alzheimer’s Disease. J. Neuroinflamm. 2018, 15, 276.Gierach, M.; Rasmus, A.; Orłowska, E. Verbal Fluency in Metabolic Syndrome. Brain Sci. 2022, 12, 255.Halikas, A.; Gibas, K.J. AMPK Induced Memory Improvements in the Diabetic Population: A Case Study. Diabetes Metab. Syndr. 2018, 12, 1141–1146Pal, K.; Mukadam, N.; Petersen, I.; Cooper, C. Mild Cognitive Impairment and Progression to Dementia in People with Diabetes, Prediabetes and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 1149–1160.Yates, K.F.; Sweat, V.; Yau, P.L.; Turchiano, M.M.; Convit, A. Impact of Metabolic Syndrome on Cognition and Brain: A Selected Review of the Literature. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2060–2067Karlsson, I.K.; Ploner, A.; Song, C.; Gatz, M.; Pedersen, N.L.; Hägg, S. Genetic Susceptibility to Cardiovascular Disease and Risk of Dementia. Transl. Psychiatry 2017, 7, e1142Atti, A.R.; Valente, S.; Iodice, A.; Caramella, I.; Ferrari, B.; Albert, U.; Mandelli, L.; De Ronchi, D. Metabolic Syndrome, Mild Cognitive Impairment, and Dementia: A Meta–Analysis of Longitudinal Studies. Am. J. Geriatr. Psychiatry 2019, 27, 625–637.Solfrizzi, V.; Scafato, E.; Capurso, C.; D’Introno, A.; Colacicco, A.M.; Frisardi, V.; Vendemiale, G.; Baldereschi, M.; Crepaldi, G.; Di Carlo, A.; et al. Metabolic Syndrome, Mild Cognitive Impairment, and Progression to Dementia. The Italian Longitudinal Study on Aging. Neurobiol. Aging 2011, 32, 1932–1941.Botchway, B.O.; Okoye, F.C.; Chen, Y.; Arthur, W.E.; Fang, M. Alzheimer Disease: Recent Updates on Apolipoprotein E and Gut Microbiome Mediation of Oxidative Stress, and Prospective Interventional Agents. Aging Dis. 2022, 13, 87–102Murray, E.R.; Kemp, M.; Nguyen, T.T. The Microbiota-Gut-Brain Axis in Alzheimer’s Disease: A Review of Taxonomic Alterations and Potential Avenues for Interventions. Arch. Clin. Neuropsychol. 2022, 37, 595–607.Thu Thuy Nguyen, V.; Endres, K. Targeting Gut Microbiota to Alleviate Neuroinflammation in Alzheimer’s Disease. Adv. Drug Deliv. Rev. 2022, 188, 114418.Kheirvari, M.; Lacy, V.A.; Goudarzi, H.; RabieNezhad Ganji, N.; Kamali Ardekani, M.; Anbara, T. The Changes in Cognitive Function following Bariatric Surgery Considering the Function of Gut Microbiome. Obes. Pillars 2022, 3, 100020. [Handley, J.D.; Williams, D.M.; Caplin, S.; Stephens, J.W.; Barry, J. Changes in Cognitive Function following Bariatric Surgery: A Systematic Review. Obes. Surg. 2016, 26, 2530–2537.Collden, H.; Hagberg, T.M.; Landin, A.; Norlen, A.-K.; Ryberg, H.; Wu, J.; Gustafsson, K.L.; Grahnemo, L.; Nilsson, K.; Sjogren, K.; et al. Origins of Progesterone in Male Mice. In Endocrine Abstracts; Bioscientifica: Bristol, UK, 2022; Volume 81.Tahmi, M.; Palta, P.; Luchsinger, J.A. Metabolic Syndrome, and Cognitive Function. Curr. Cardiol. Rep. 2021, 23, 180. [Kordestani-Moghadam, P.; Assari, S.; Nouriyengejeh, S.; Mohammadipour, F.; Pourabbasi, A. Cognitive Impairments and Associated Structural Brain Changes in Metabolic Syndrome and Implications of Neurocognitive Intervention. J. Obes. Metab. Syndr. 2020, 29, 174–179. [Google Scholar] [CrossRef] [PubMed]NHANES—National Health and Nutrition Examination Survey Homepage. Available online:Johnson, C.L.; Dohrmann, S.M.; Burt, V.L.; Mohadjer, L.K. National Health, and Nutrition Examination Survey: Sample Design, 2011–2014. In Vital and Health Statistics. Series 2, Data Evaluation and Methods Research; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2014; No. 162; pp. 1–33.Brody, D.J.; Kramarow, E.A.; Taylor, C.A.; McGuire, L.C. Cognitive Performance in Adults Aged 60 and Over: National Health and Nutrition Examination Survey, 2011–2014. Natl. Health Stat. Rep. 2019, 126, 23.Morris, J.C.; Heyman, A.; Mohs, R.C.; Hughes, J.P.; van Belle, G.; Fillenbaum, G.; Mellits, E.D.; Clark, C. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and Neuropsychological Assessment of Alzheimer’s Disease. Neurology 1989, 39, 1159–1165Fillenbaum, G.G.; van Belle, G.; Morris, J.C.; Mohs, R.C.; Mirra, S.S.; Davis, P.C.; Tariot, P.N.; Silverman, J.M.; Clark, C.M.; Welsh-Bohmer, K.A.; et al. Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): The First Twenty Years. Alzheimer’s Dement. 2008, 4, 96–109.Henry, J.D.; Crawford, J.R. A Meta-Analytic Review of Verbal Fluency Performance following Focal Cortical Lesions. Neuropsychology 2004, 18, 284–295.Jaeger, J. Digit Symbol Substitution Test: The Case for Sensitivity Over Specificity in Neuropsychological Testing. J. Clin. Psychopharmacol. 2018, 38, 513–519Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645.NHANES Survey Methods and Analytic Guidelines. Available online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx (accessed on 13 July 2022).National Center for Health Statistics (U.S.) (Ed.) National Center for Health Statistics Data Presentation Standards for Proportions; Vital and Health Statistics. Series 2, Data Evaluation and Methods Research; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2017.Gao, H.; Wang, K.; Ahmadizar, F.; Zhuang, J.; Jiang, Y.; Zhang, L.; Gu, J.; Zhao, W.; Xia, Z. Associations of Changes in Late-Life Blood Pressure with Cognitive Impairment among Older Population in China. BMC Geriatr. 2021, 21, 536.Pedditzi, E.; Peters, R.; Beckett, N. The Risk of Overweight/Obesity in Mid-Life and Late Life for the Development of Dementia: A Systematic Review and Meta-Analysis of Longitudinal Studies. Age Ageing 2016, 45, 14–21.Zhang, T.; Shaw, M.; Cherbuin, N. Association between Type 2 Diabetes Mellitus and Brain Atrophy: A Meta-Analysis. Diabetes Metab. J. 2022, 46, 781–802Goughari, A.S.; Mazhari, S.; Pourrahimi, A.M.; Sadeghi, M.M.; Nakhaee, N. Associations between Components of Metabolic Syndrome and Cognition in Patients with Schizophrenia. J. Psychiatr. Pract. 2015, 21, 190–197. [Liu, C.-L.; Lin, M.-H.; Peng, L.-N.; Chen, L.-K.; Su, C.-T.; Liu, L.-K.; Chen, L.-Y. Late-Life Metabolic Syndrome Prevents Cognitive Decline among Older Men Aged 75 Years and over: One-Year Prospective Cohort Study. J. Nutr. Health Aging 2013, 17, 523–526Martinez-Miller, E.E.; Kohl, H.W.; Barlow, C.E.; Willis, B.L.; DeFina, L.F. Metabolic Syndrome and Cognitive Impairment among High Socioeconomic, Nondemented Older US Adults. J. Am. Geriatr. Soc. 2019, 67, 1437–1443.Feinkohl, I.; Janke, J.; Hadzidiakos, D.; Slooter, A.; Winterer, G.; Spies, C.; Pischon, T. Associations of the Metabolic Syndrome and Its Components with Cognitive Impairment in Older Adults. BMC Geriatr. 2019, 19, 77.Harrison, S.L.; Stephan, B.C.M.; Siervo, M.; Granic, A.; Davies, K.; Wesnes, K.A.; Kirkwood, T.B.L.; Robinson, L.; Jagger, C. Is There an Association between Metabolic Syndrome and Cognitive Function in Very Old Adults? The Newcastle 85+ Study. J. Am. Geriatr. Soc. 2015, 63, 667–675. [Gross, T.J.; Araújo, R.B.; Vale, F.A.C.; Bassani, M.; Maciel, C.D. Dependence between Cognitive Impairment and Metabolic Syndrome Applied to a Brazilian Elderly Dataset. Artif. Intell. Med. 2018, 90, 53–60.m, S.-H.; Kim, M.; Ahn, Y.-B.; Lim, H.-K.; Kang, S.-G.; Cho, J.; Park, S.-J.; Song, S.-W. Effect of Dance Exercise on Cognitive Function in Elderly Patients with Metabolic Syndrome: A Pilot Study. J. Sports. Sci. Med. 2011, 10, 671–678. [affe, K.; Haan, M.; Blackwell, T.; Cherkasova, E.; Whitmer, R.A.; West, N. Metabolic Syndrome and Cognitive Decline in Elderly Latinos: Findings from the Sacramento Area Latino Study of Aging Study. J. Am. Geriatr. Soc. 2007, 55, 758–762.Hishikawa, N.; Fukui, Y.; Sato, K.; Kono, S.; Yamashita, T.; Ohta, Y.; Deguchi, K.; Abe, K. Cognitive and Affective Functions in Alzheimer’s Disease Patients with Metabolic Syndrome. Eur. J. Neurol. 2016, 23, 339–345.Lee, E.Y.; Lee, S.J.; Kim, K.M.; Yun, Y.M.; Song, B.M.; Kim, J.E.; Kim, H.C.; Rhee, Y.; Youm, Y.; Kim, C.O. Association of Metabolic Syndrome and 25-Hydroxyvitamin D with Cognitive Impairment among Elderly Koreans. Geriatr. Gerontol. Int. 2017, 17, 1069–1075. [oreans. Geriatr. Gerontol. Int. 2017, 17, 1069–1075. [Google Scholar] [CrossRef] [PubMed] Mehra, A.; Suri, V.; Kumari, S.; Avasthi, A.; Grover, S. Association of Mild Cognitive Impairment and Metabolic Syndrome in Patients with Hypertension. Asian J. Psychiatr. 2020, 53, 102185Oh, H.-M.; Kim, S.-H.; Kang, S.-G.; Park, S.-J.; Song, S.-W. The Relationship between Metabolic Syndrome and Cognitive Function. Korean J. Fam. Med. 2011, 32, 358–366.Schmitt, L.O.; Gaspar, J.M. Obesity-Induced Brain Neuroinflammatory and Mitochondrial Changes. Metabolites 2023, 13, 86. [Marcos, J.L.; Olivares-Barraza, R.; Ceballo, K.; Wastavino, M.; Ortiz, V.; Riquelme, J.; Martínez-Pinto, J.; Muñoz, P.; Cruz, G.; Sotomayor-Zárate, R. Obesogenic Diet-Induced Neuroinflammation: A Pathological Link between Hedonic and Homeostatic Control of Food Intake. Int. J. Mol. Sci. 2023, 24, 1468.Jin, Y.; Wu, R.; Li, L.; Shen, L.; Gu, Y.; Sun, C. Exosomes from Inflamed Macrophages Promote the Progression of Parkinson’s Disease by Inducing Neuroinflammation. Mol. Neurobiol. 2023, 60, 1914–1928.Hata, M.; Andriessen, E.M.M.A.; Hata, M.; Diaz-Marin, R.; Fournier, F.; Crespo-Garcia, S.; Blot, G.; Juneau, R.; Pilon, F.; Dejda, A.; et al. Past History of Obesity Triggers Persistent Epigenetic Changes in Innate Immunity and Exacerbates Neuroinflammation. Science 2023, 379, 45–62.Yang, X.; Xu, Y.; Gao, W.; Wang, L.; Zhao, X.; Liu, G.; Fan, K.; Liu, S.; Hao, H.; Qu, S.; et al. Hyperinsulinemia-Induced Microglial Mitochondrial Dynamic and Metabolic Alterations Lead to Neuroinflammation In Vivo and in Vitro. Front. Neurosci. 2022, 16, 1036872.Salas-Venegas, V.; Flores-Torres, R.P.; Rodríguez-Cortés, Y.M.; Rodríguez-Retana, D.; Ramírez-Carreto, R.J.; Concepción-Carrillo, L.E.; Pérez-Flores, L.J.; Alarcón-Aguilar, A.; López-Díazguerrero, N.E.; Gómez-González, B.; et al. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front. Integr. Neurosci. 2022, 16, 798995. [Zingale, V.D.; D’Angiolini, S.; Chiricosta, L.; Calcaterra, V.; Selvaggio, G.G.O.; Zuccotti, G.; Destro, F.; Pelizzo, G.; Mazzon, E. Does Childhood Obesity Trigger Neuroinflammation? Biomedicines 2022, 10, 1953.Neniskyte, U.; Neher, J.J.; Brown, G.C. Neuronal Death Induced by Nanomolar Amyloid β Is Mediated by Primary Phagocytosis of Neurons by Microglia. J. Biol. Chem. 2011, 286, 39904–39913.Cavalieri, M.; Ropele, S.; Petrovic, K.; Pluta-Fuerst, A.; Homayoon, N.; Enzinger, C.; Grazer, A.; Katschnig, P.; Schwingenschuh, P.; Berghold, A.; et al. Metabolic Syndrome, Brain Magnetic Resonance Imaging, and Cognition. Diabetes Care 2010, 33, 2489–2495. [Guicciardi, M.; Crisafulli, A.; Doneddu, A.; Fadda, D.; Lecis, R. Effects of Metabolic Syndrome on Cognitive Performance of Adults During Exercise. Front. Psychol. 2019, 10, 1845.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf824352https://bonga.unisimon.edu.co/bitstreams/cfa2c13f-c789-4343-8294-db630ecf26f9/download700b6c5356d19deb7fced42d8467fab0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/fad64b39-6f1f-4de3-a8d3-93393a3afa16/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/2b49eaf0-aa89-47dc-b287-166419dca589/download733bec43a0bf5ade4d97db708e29b185MD53TEXT09_2023_GC_ART_NHANES.pdf.txt09_2023_GC_ART_NHANES.pdf.txtExtracted texttext/plain71023https://bonga.unisimon.edu.co/bitstreams/3dbac010-5f62-4530-9a33-4e0c31da4086/downloadc7a203481726e89319e3e55dff95f1feMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain71023https://bonga.unisimon.edu.co/bitstreams/ef9e7564-f0d9-4c73-86b6-69a23c20c572/downloadc7a203481726e89319e3e55dff95f1feMD56THUMBNAIL09_2023_GC_ART_NHANES.pdf.jpg09_2023_GC_ART_NHANES.pdf.jpgGenerated Thumbnailimage/jpeg5785https://bonga.unisimon.edu.co/bitstreams/462ab407-490f-4afc-b222-0384f79ac0d7/downloade83e59e53f585d6335df37b3b287495aMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5785https://bonga.unisimon.edu.co/bitstreams/e8bcffa8-490e-4dd9-a106-52f730778269/downloade83e59e53f585d6335df37b3b287495aMD5720.500.12442/13162oai:bonga.unisimon.edu.co:20.500.12442/131622024-08-14 21:51:58.227http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u