Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea

Botrytis cinerea is the most widely studied necrotrophic phytopathogenic fungus. It causes economic losses that are difficult to calculate due to the large number of hosts. While there are a wide array of fungicides on the market to control this phytopathogen, they are not considered sustainable in...

Full description

Autores:
Bolívar-Anillo, Hernando José
Garrido, Carlos
G. Collado, Isidro
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2800
Acceso en línea:
http://hdl.handle.net/20.500.12442/2800
Palabra clave:
Antifungal
Biological control agents
Endophytic fungus and bacteria
Grey mould disease
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_26a6a1cddb61227a2086c9e32d97d289
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/2800
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea
title Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea
spellingShingle Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea
Antifungal
Biological control agents
Endophytic fungus and bacteria
Grey mould disease
title_short Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea
title_full Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea
title_fullStr Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea
title_full_unstemmed Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea
title_sort Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea
dc.creator.fl_str_mv Bolívar-Anillo, Hernando José
Garrido, Carlos
G. Collado, Isidro
dc.contributor.author.none.fl_str_mv Bolívar-Anillo, Hernando José
Garrido, Carlos
G. Collado, Isidro
dc.subject.eng.fl_str_mv Antifungal
Biological control agents
Endophytic fungus and bacteria
Grey mould disease
topic Antifungal
Biological control agents
Endophytic fungus and bacteria
Grey mould disease
description Botrytis cinerea is the most widely studied necrotrophic phytopathogenic fungus. It causes economic losses that are difficult to calculate due to the large number of hosts. While there are a wide array of fungicides on the market to control this phytopathogen, they are not considered sustainable in terms of the environment and human health. The search for new alternatives to control this phytopathogen has led to the use of endophytic microorganisms as biological control agents. Endophytic bacteria and endophytic fungi have been isolated from different plant species and some have proven effective in inhibiting B. cinerea. Furthermore, a significant number of fungistatic or fungicidal metabolites which could be used as alternative complementary chemical controls have been isolated from these fungi and bacteria. In this review, in addition to the metabolites which have shown fungicide activity against this phytopathogen, the different genera and species of endophytic bacteria and fungi are also considered. These have been isolated from various plant species and have displayed antagonistic activity against B. cinerea.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-03-20T14:26:25Z
dc.date.available.none.fl_str_mv 2019-03-20T14:26:25Z
dc.date.issued.none.fl_str_mv 2019
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 15687767
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/2800
identifier_str_mv 15687767
url http://hdl.handle.net/20.500.12442/2800
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Springer Link
dc.source.eng.fl_str_mv Phytochemistry Reviews
dc.source.spa.fl_str_mv Vol 17, No. 62 (2019)
institution Universidad Simón Bolívar
dc.source.uri.spa.fl_str_mv https://link.springer.com/article/10.1007/s11101-019-09603-5
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/d1c92bc1-edd8-418c-a120-e9fc309b8131/download
https://bonga.unisimon.edu.co/bitstreams/7b737f73-2e41-4b67-a91a-bdc837fbac23/download
https://bonga.unisimon.edu.co/bitstreams/e432bbad-80f4-4fb8-9602-822b7b8d3841/download
https://bonga.unisimon.edu.co/bitstreams/8f2cf4f8-3fd5-4939-a47a-d9dab3c6b42f/download
https://bonga.unisimon.edu.co/bitstreams/38cb380d-4df6-46db-a245-089c81fbe10b/download
https://bonga.unisimon.edu.co/bitstreams/9543eca6-aea3-464c-bbd6-e7df08c37a3b/download
bitstream.checksum.fl_str_mv 054060069bc4b4ec38b84472710b3d21
3fdc7b41651299350522650338f5754d
319b320ac6effa4ed0e285dfdaf617ac
54bc0af5b77ef41d55ec0990fd884072
e9d0f0dedd36a0bbd994ba2314e7156e
a30b5fa77f04afdfadeff14775eee8e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100490358423552
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Bolívar-Anillo, Hernando Josédf7fd1af-1615-4689-b450-df116ec6959f-1Garrido, Carlose83d3090-baec-4bd5-9cea-c259ee1fa448-1G. Collado, Isidro4672ce77-fb51-4723-bdd9-2ad3def1ca1a-12019-03-20T14:26:25Z2019-03-20T14:26:25Z201915687767http://hdl.handle.net/20.500.12442/2800Botrytis cinerea is the most widely studied necrotrophic phytopathogenic fungus. It causes economic losses that are difficult to calculate due to the large number of hosts. While there are a wide array of fungicides on the market to control this phytopathogen, they are not considered sustainable in terms of the environment and human health. The search for new alternatives to control this phytopathogen has led to the use of endophytic microorganisms as biological control agents. Endophytic bacteria and endophytic fungi have been isolated from different plant species and some have proven effective in inhibiting B. cinerea. Furthermore, a significant number of fungistatic or fungicidal metabolites which could be used as alternative complementary chemical controls have been isolated from these fungi and bacteria. In this review, in addition to the metabolites which have shown fungicide activity against this phytopathogen, the different genera and species of endophytic bacteria and fungi are also considered. These have been isolated from various plant species and have displayed antagonistic activity against B. cinerea.engSpringer LinkPhytochemistry ReviewsVol 17, No. 62 (2019)https://link.springer.com/article/10.1007/s11101-019-09603-5AntifungalBiological control agentsEndophytic fungus and bacteriaGrey mould diseaseEndophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinereaarticlehttp://purl.org/coar/resource_type/c_6501Abdel-rahim IR, Abo-elyousr K (2017) Using of endophytic Saccharomycopsis fibuligera and thyme oil for management of gray mold rot of guava fruits. Biol Control 10:124–131Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16Andreolli M, Lampis S, Zapparoli G, et al (2015) Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiol Res 183:42–52Bardin M, Ajouz S, Comby M, et al (2015) Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front Plant Sci 6:1–14Barka E, Gognies S, Nowak J, et al (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142Boubakri H, Schmitt C (2015) Biocontrol potential of chenodeoxycholic acid ( CDCA ) and endophytic Bacillus subtilis strains against the most destructive grapevine pathogens. New Zeal J Crop Hortic Sci 43:261–274Bulgarelli D, Schlaeppi K, Spaepen S, et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838Busby P, Ridout M, Newcombe G (2016) Fungal endophytes: modifiers of plant disease. Plant Mol Biol 90:645–655Carbú M, González-Rodríguez V, Garrido C, et al (2016) New biocontrol strategies for strawberry fungal pathogens. In: Husaini A, Neri D (eds) Strawberry: Growth, Development and Diseases. CABI, BostonCard S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour : the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92:1–20Chebotar VK, Malfanova NV, Shcherbakov V, et al (2015) Endophytic bacteria in microbial preparations that improve plant development (review). Appl Biochem Microbiol 51:271–277Cocq K, Gurr S, Hirsch P, Mauchline T (2017) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol 8:469–473Combés A, Ndoye I, Bance C, et al (2012) Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PLoS One 7:1–11Compant S, Duffy B, Nowak J, et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases : principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959Contreras M, Loeza PD, Villegas J, et al (2016) A glimpse of the endophytic bacterial diversity in roots of blackberry plants ( Rubus fruticosus ). Genet Mol Res 15:1–10Cosoveanu A, Cabrera Y, Hernandez G, Cabrera R (2014) Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopatogenic fungi. Int J Agric Crop Sci 7:1497–1503Dean R, van Kan J, Pretorius ZA, et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:1–17Dutta D, Puzari K, Gogoi R, Dutta P (2014) Endophytes: exploitation as a tool in plant protection. Brazilian Arch Biol Technol 57:621–629Elad Y, Stewart A (2007) Microbial control of Botrytis spp. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: Biology, Pathology and Control, 1st edn. Springer, New YorkEljounaidi K, Kyu S, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases – review and future prospects. Biol Control 103:62–68Eun C, Mee J (2016) Endophytic bacteria as biocontrol agents against plant pathogens: current state-of-the-art. Plant Biotechnol Rep 10:353–357Farace G, Fernandez O, Jacquens L, et al (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16:177–187Fouda A, Hassan S, Eid A, Ewais E (2015) Biotechnological applications of fungal endophytes associated with medicinal plant Asclepias sinaica (Bioss.). Ann Agric Sci 60:95–104Fu J, Zhou Y, Li H, et al (2011) Antifungal metabolites from Phomopsis sp. By254, an endophytic fungus in Gossypium hirsutum. African J Microbiol Res 5:1231–1236Gao Z, Zhang B, Liu H, et al (2017) Identification of endophytic Bacillus velezensis ZSY- 1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39Glare T, Caradus J, Gelernter W, et al (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258Haidar R, Fermaud M, Calvo-Garrido C, et al (2016) Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathol Mediterr 55:13–34Hardoim P, Overbeek L, Berg G, et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320He R, Wang G, Liu X, et al (2009) Antagonistic bioactivity of an endophytic bacterium isolated from Epimedium brevicornu Maxim. African J Biotechnol 8:191–195Hong CE, Jo SH, Moon JY, Lee J (2015) Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytophathogens. Plant Biotechnol Rep 9:451–458Hormazabal E, Piontelli E (2009) Endophytic fungi from Chilean native gymnosperms: antimicrobial activity against human and phytopathogenic fungi. World J Microbiol Biotechnol 25:813–819Hung R, Lee S, Bennett J (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99:3395–3405Kefi A, Ben Slimene I, Karkouch I, et al (2015) Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World J Microbiol Biotechnol 31:1967–1976Kernaghan G, Mayerhofer M, Griffin A (2017) Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Can J Microbiol 63:583–595Kilani-Feki O, Jaoua S (2011) Biological control of Botrytis cinerea using an antagonictic and endophytic Burkholderia cepacia (Cs5) for the vine plantlets protection. Can J Microbiol 57:896–901Kusari P, Kusari S, Spiteller M, Kayser O (2013) Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 60:137–151Kusari P, Kusari S, Spiteller M, Kayser O (2014) Biocontrol potential of endophytes harbored in Radula marginata (liverwort) from the New Zealand ecosystem. Antonie Van Leeuwenhoek 106:771–88Lazarovits G, Turnbull A, Johnston-Monje D (2014) Plant health management: biological control of plant pathogens. Encycl. Agric. Food Syst. 4:388–399Li X-J, Zhang Q, Zhang A-L, Gao J-M (2012) Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities. J Agric Food Chem 60:3424–3431Liarzi O, Bar E, Lewinsohn E, Ezra D (2016) Use of the endophytic fungus Daldinia cf . concentrica and its volatiles as bio-control agents. PLoS One 11:1–18Liu B, Huang L, Buchenauer H, Kang Z (2010) Isolation and partial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pestic Biochem Physiol 98:305–311Lu XH, Jiao XL, Hao JJ, et al (2016) Characterization of resistance to multiple fungicides in Botrytis cinerea populations from Asian ginseng in northeastern China. Eur J Plant Pathol 144:467–476Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334Mari M, Guizzardi M, Brunelli M, Folchi A (1996) Postharvest biological control of grey mould (Botrytis cinerea Pers .: Fr.) on fresh-market tomatoes with Bacillus amyloliquefaciens. Crop Prot 15:699–705Martinez-Hidalgo P, Garcia J, Pozo M (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:1–11Miles L, Lopera C, González S, et al (2012) Exploring the biocontrol potential of fungal endophytes from an Andean Colombian Paramo ecosystem. BioControl 57:697–710Miotto-Vilanova L, Jacquard C, Courteaux B, et al (2016) Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization. Front Plant Sci 7:1–15Morath S, Hung R, Bennett J (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83Nair DN, Padmavathy S (2014) Impact of endophytic microorganisms on plants, environment and humans. Sci World J 2014:1–11Narayan P, Kim W, Woo S, et al (2007) Fungal endophytes in roots of Aralia species and their antifungal activity. Plant Pathol J 23:287–294Nicot PC, Stewart A, Bardin M, Elad Y (2016) Biological control and biopesticide suppression of Botrytis -incited diseases. In: Fillinger S, Elad Y (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems, 1st edn. Springer, New YorkNoumeur SR, Mancini V, Romanazzi G (2016) Activity of endophytic fungi from Artemisia absinthium on Botrytis cinerea. Acta Hortic 1144:101–104O´Brien P (2017) Biological control of plant diseases. Australas plant Pathol 46:293–304Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125Özer G, Bayraktar H (2014) First report of Botrytis cinerea on Cornelian cherry. Australas Plant Dis Notes 9:2012–2014Pan F, Liu Z, Chen Q, et al (2016) Endophytic fungus strain 28 isolated from Houttuynia cordata possesses wide-spectrum antifungal activity. Brazilian J Microbiol 47:480–488Park J, Choi G, Lee H, et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117Park Y, Young J, Jong D, et al (2015) Screening and characterization of endophytic fungi of Panax ginseng Meyer for biocontrol activity against ginseng pathogens. Biol Control 91:71–81Parnell JJ, Berka R, Young HA, et al (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1–12Ritika B, Utpal D (2014) An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. African J Microbiol Res 8:1749–1762Rodríguez A, Acosta A, Rodríguez C (2014) Fungicide resistance of Botrytis cinerea in tomato greenhouses in the Canary Islands and effectiveness of non-chemical treatments against gray mold. World J Microbiol Biotechnol 30:2397–2406Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, et al (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52Romanazzi G, Smilanick J, Feliziani E, Droby S (2016) Integrated management of postharvest gray mold on fruit crops. Postharvest Biol Technol 113:69–76Ryan RP, Germaine K, Franks A, et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9Santoyo G, Moreno-Hagelsieb G, Orozco-Mosqueda M, Glick B (2016) Plant growth- promoting bacterial endophytes. Microbiol Res 183:92–99Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29Schalchli H, Tortella G, Rubilar O, et al (2016) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 36:144–152Schena L, Nigro F, Pentimone I, et al (2003) Control of postharvest rots of sweet cherries and table grapes with endophytic isolates of Aureobasidium pullulans. Postharvest Biol Technol 30:209–220Senthilkumar M, Anandham R, Madhaiyan M, et al (2011) Endophytic bacteria: perspectives and applications in agricultural crop production. In: Maheshwari DK (ed) Bacteria in Agrobiology: Crop Ecosystems, 1st edn. Springer, New YorkSoares M, Li H-J, Bergen M, et al (2015) Functional role of an endophytic Bacillus amyloliquefaciens in enhancing growth and disease protection of invasive English ivy (Hedera Helix L.). Plant soil 405:107–123Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857Suprapta DN (2012) Potential of microbial antagonists as biocontrol agents against plant fungal pathogens. J ISSAAS 18:1–8Suryanarayanan T, Thirunavukkarasu N, Govindarajulu M, et al (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19Syed Ab Rahman S, Singh E, Pietersen C, Schenck P (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111Terhonen E, Sipari N, Asiegbu FO (2016) Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biol Control 99:53–63Toffano L, Batista M, Pascholati S (2017) Potential of fumigation of orange fruits with volatile organic compounds produced by Saccharomyces cerevisiae to control citrus black spot disease at postharvest. Biol Control 108:77–82Tomsheck A, Strobel G, Booth E, et al (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60:903–914Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64:21–32Van J, Shaw M, Grant-Downton R (2014) Botrytis species: Relentless necrotrophic thugs or endophytes gone rogue? Mol Plant Pathol 15:957–961Velivelli S, De Vos P, Kromann P, et al (2014) Biological control agents: from field to market, problems, and challenges. Trends Biotechnol 32:493–496Wang H, Wen K, Zhao X, et al (2009a) The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Prot 28:634–639Wang S, Hu T, Jiao Y, et al (2009b) Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers . Front Agric China 3:247–252Williamson B, Tudzynski B, Tudzynnski P, van Kan JA (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580Yang C, Zhang X, Shi G, et al (2011) Isolation and identification of endophytic bacterium W4 against tomato Botrytis cinerea and antagonistic activity stability. African J Microbiol 5:131–136Zhang C, Zheng B, Lao J, et al (2008) Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei. Appl Microbiol Biotechnol 78:833–840Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753-771Zhang Q, Zhang J, Yang L, et al (2014) Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol Control 72:98–108Zhang X, Zhou Y, Li Y, et al (2017) Screening and characterization of endophytic Bacillus for biocontrol of grapevine downy mildew. Crop Prot 96:173–179Zhao JH, Zhang YL, Wang LW, et al (2012) Bioactive secondary metabolites from Nigrospora sp . LLGLM003, an endophytic fungus of the medicinal plant Moringa oleifera Lam. World J Microbiol Biotechnol 28:2107–2112ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf768594https://bonga.unisimon.edu.co/bitstreams/d1c92bc1-edd8-418c-a120-e9fc309b8131/download054060069bc4b4ec38b84472710b3d21MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/7b737f73-2e41-4b67-a91a-bdc837fbac23/download3fdc7b41651299350522650338f5754dMD52TEXTEndophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea.pdf.txtEndophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea.pdf.txtExtracted texttext/plain76955https://bonga.unisimon.edu.co/bitstreams/e432bbad-80f4-4fb8-9602-822b7b8d3841/download319b320ac6effa4ed0e285dfdaf617acMD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain78380https://bonga.unisimon.edu.co/bitstreams/8f2cf4f8-3fd5-4939-a47a-d9dab3c6b42f/download54bc0af5b77ef41d55ec0990fd884072MD55THUMBNAILEndophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea.pdf.jpgEndophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea.pdf.jpgGenerated Thumbnailimage/jpeg1222https://bonga.unisimon.edu.co/bitstreams/38cb380d-4df6-46db-a245-089c81fbe10b/downloade9d0f0dedd36a0bbd994ba2314e7156eMD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3269https://bonga.unisimon.edu.co/bitstreams/9543eca6-aea3-464c-bbd6-e7df08c37a3b/downloada30b5fa77f04afdfadeff14775eee8e6MD5620.500.12442/2800oai:bonga.unisimon.edu.co:20.500.12442/28002024-07-26 03:06:41.156open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=