Conditioning of extreme learning machine for noisy data using heuristic optimization

This article provides a tool that can be used in the exact sciences to obtain good approximations to reality when noisy data is inevitable. Two heuristic optimization algorithms are implemented: Simulated Annealing and Particle Swarming for the determination of the extreme learning machine output we...

Full description

Autores:
Salazar, E
Mora, M
Vásquez, A
Gelvez, E
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/6381
Acceso en línea:
https://hdl.handle.net/20.500.12442/6381
https://iopscience.iop.org/article/10.1088/1742-6596/1514/1/012007/pdf
Palabra clave:
Exact sciences
Data
Optimization algorithms
Heuristic algorithms
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_25c26f5488e54a0517a3523889046e7a
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/6381
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Conditioning of extreme learning machine for noisy data using heuristic optimization
title Conditioning of extreme learning machine for noisy data using heuristic optimization
spellingShingle Conditioning of extreme learning machine for noisy data using heuristic optimization
Exact sciences
Data
Optimization algorithms
Heuristic algorithms
title_short Conditioning of extreme learning machine for noisy data using heuristic optimization
title_full Conditioning of extreme learning machine for noisy data using heuristic optimization
title_fullStr Conditioning of extreme learning machine for noisy data using heuristic optimization
title_full_unstemmed Conditioning of extreme learning machine for noisy data using heuristic optimization
title_sort Conditioning of extreme learning machine for noisy data using heuristic optimization
dc.creator.fl_str_mv Salazar, E
Mora, M
Vásquez, A
Gelvez, E
dc.contributor.author.none.fl_str_mv Salazar, E
Mora, M
Vásquez, A
Gelvez, E
dc.subject.eng.fl_str_mv Exact sciences
Data
Optimization algorithms
Heuristic algorithms
topic Exact sciences
Data
Optimization algorithms
Heuristic algorithms
description This article provides a tool that can be used in the exact sciences to obtain good approximations to reality when noisy data is inevitable. Two heuristic optimization algorithms are implemented: Simulated Annealing and Particle Swarming for the determination of the extreme learning machine output weights. The first operates in a large search space and at each iteration it probabilistically decides between staying at its current state or moving to another. The swarm of particles, it optimizes a problem from a population of candidate solutions, moving them throughout the search space according to position and speed. The methodology consists of building data sets around a polynomial function, implementing the heuristic algorithms and comparing the errors with the traditional computation method using the Moore–Penrose inverse. The results show that the heuristic optimization algorithms implemented improve the estimation of the output weights when the input have highly noisy data.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-27T23:53:04Z
dc.date.available.none.fl_str_mv 2020-08-27T23:53:04Z
dc.date.issued.none.fl_str_mv 2020
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.issn.none.fl_str_mv 17426588
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/6381
dc.identifier.url.none.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1514/1/012007/pdf
identifier_str_mv 17426588
url https://hdl.handle.net/20.500.12442/6381
https://iopscience.iop.org/article/10.1088/1742-6596/1514/1/012007/pdf
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv pdf
dc.publisher.eng.fl_str_mv IOP Publishing
dc.source.eng.fl_str_mv Journal of Physics: Conference Series
dc.source.none.fl_str_mv Vol. 1514 No. 1 (2020)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/1c98716b-cceb-4396-9a85-71ddf40b31d4/download
https://bonga.unisimon.edu.co/bitstreams/971df614-3603-450b-8f1e-c406873da968/download
https://bonga.unisimon.edu.co/bitstreams/cf62b938-4caa-44e1-9a46-97bb1af6f830/download
https://bonga.unisimon.edu.co/bitstreams/203c9ea4-3494-471d-ab64-92a23541abf2/download
https://bonga.unisimon.edu.co/bitstreams/ccff8517-f1d3-400c-a615-c06eec44a2dd/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
79945951028744daddb924d373ce3da8
1ff401975ce33134573c2facd5454bd6
296d6e7bdba49a87841fd0e29a797791
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076092497002496
spelling Salazar, E986e187f-0d67-43f5-81cd-ec0b48cc4766Mora, M630644e5-97cc-482b-b5d0-8f65851e3399Vásquez, Ad8f4cb05-84e7-4272-9e5f-5744834df75fGelvez, Ed34b29f4-5323-4e58-83ca-7ae2e85e1ce02020-08-27T23:53:04Z2020-08-27T23:53:04Z202017426588https://hdl.handle.net/20.500.12442/6381https://iopscience.iop.org/article/10.1088/1742-6596/1514/1/012007/pdfThis article provides a tool that can be used in the exact sciences to obtain good approximations to reality when noisy data is inevitable. Two heuristic optimization algorithms are implemented: Simulated Annealing and Particle Swarming for the determination of the extreme learning machine output weights. The first operates in a large search space and at each iteration it probabilistically decides between staying at its current state or moving to another. The swarm of particles, it optimizes a problem from a population of candidate solutions, moving them throughout the search space according to position and speed. The methodology consists of building data sets around a polynomial function, implementing the heuristic algorithms and comparing the errors with the traditional computation method using the Moore–Penrose inverse. The results show that the heuristic optimization algorithms implemented improve the estimation of the output weights when the input have highly noisy data.pdfengIOP PublishingAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference SeriesVol. 1514 No. 1 (2020)Exact sciencesDataOptimization algorithmsHeuristic algorithmsConditioning of extreme learning machine for noisy data using heuristic optimizationinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Varela E and Campbells E 2011 Redes Neuronales Artificiales: Una revisión del estado del arte, aplicaciones y tendencias futuras Revista Investigación y Desarrollo en TIC 2 18Karayiannis N and Venetsanopoulos A 2013 Artificial Neural Networks (New York: Springer Science+Business Media) Learning algorithms, performance evaluation, and applications 209Hornik K, Stinchcombe M and White H 1989 Multilayer feedforward networks are universal approximators Neural Networks 2 359Huang G B, Chen L and Siew C K 2006 Universal approximation using incremental constructive feedforward networks with random hidden nodes IEEE Trans. Neural Networks 17 879Zhang L, Zhang D and Tian F 2016 SVM and ELM: Who Wins? Object recognition with deep convolutional features from ImageNet Proceedings of ELM-2015 1 249Huang G B and Chen L 2008 Enhanced random search based incremental extreme learning machine Neurocomputing 71 3460Yang Y, Wang Y and Yuan X 2012 Bidirectional extreme learning machine for regression problem and its learning effectiveness IEEE Transactions on Neural Networks and Learning Systems 23 1498Cao W, Ming Z, Wang X and Cai S 2019 Improved bidirectional extreme learning machine based on enhanced random search Memetic Computing 11 19Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C and Lendasse A 2009 OP-ELM: Optimally pruned extreme learning machine IEEE transactions on Neural Networks 21 158Ranganathan S, Nakai K and Schonbach C 2018 Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics (Cambridge: Elsevier)Khachaturyan A, Semenovskaya S and Vainshtein B 1979 Statistical-thermodynamic approach to determination of structure amplitude phases Sov. Phys. Crystallography 24 519Kirkpatrick S, Gelatt J and Vecchi 1983 Optimization by simulated annealing Science 220 671Semenovskaya S V, Khachaturyan K A and Khachaturyan A G 1985 Statistical mechanics approach to the determination of a crystal Acta Cryst. A41 268Brownlee J 2011 Clever algorithms: Nature-inspired Programming Recipes (Autralia: Jason Brownlee)Eberhart R and Kennedy J 1995 Proceedings of ICNN'95 - International Conference on Neural Networks (Perth: IEEE) Particle swarm optimization 1942Eberhart R, Shi Y and Kennedy J 2001 Swarm Intelligence (San Diego: Academic Press)CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/1c98716b-cceb-4396-9a85-71ddf40b31d4/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/971df614-3603-450b-8f1e-c406873da968/download733bec43a0bf5ade4d97db708e29b185MD53ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1070260https://bonga.unisimon.edu.co/bitstreams/cf62b938-4caa-44e1-9a46-97bb1af6f830/download79945951028744daddb924d373ce3da8MD51TEXTPDF.pdf.txtPDF.pdf.txtExtracted texttext/plain20791https://bonga.unisimon.edu.co/bitstreams/203c9ea4-3494-471d-ab64-92a23541abf2/download1ff401975ce33134573c2facd5454bd6MD54THUMBNAILPDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg1398https://bonga.unisimon.edu.co/bitstreams/ccff8517-f1d3-400c-a615-c06eec44a2dd/download296d6e7bdba49a87841fd0e29a797791MD5520.500.12442/6381oai:bonga.unisimon.edu.co:20.500.12442/63812024-08-14 21:51:54.56http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u