Lipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuela
Background. Visceral adiposity is related to insulin resistance (IR), a metabolic state considered as a risk factor for other cardiometabolic diseases. In that matter, mathematical indexes such as the visceral adiposity index (VAI) and the lipid accumulation product (LAP) could indirectly assess IR...
- Autores:
-
Bermúdez, Valmore
Salazar, Juan
Fuenmayor, Jorge
Nava, Manuel
Ortega, Ángel
Duran, Pablo
Rojas, Milagros
Añez, Roberto
Rivas-Montenegro, Alejandra
Angarita, Lissé
Chacín, Maricarmen
Cano, Clímaco
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/8389
- Palabra clave:
- Insulin resistance
Hyperinsulinemia
Metabolic syndrome
Homeostatic model assessment
Diabetes
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_2442026536ce0bb889d794574e62ece6 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/8389 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Lipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuela |
title |
Lipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuela |
spellingShingle |
Lipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuela Insulin resistance Hyperinsulinemia Metabolic syndrome Homeostatic model assessment Diabetes |
title_short |
Lipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuela |
title_full |
Lipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuela |
title_fullStr |
Lipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuela |
title_full_unstemmed |
Lipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuela |
title_sort |
Lipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuela |
dc.creator.fl_str_mv |
Bermúdez, Valmore Salazar, Juan Fuenmayor, Jorge Nava, Manuel Ortega, Ángel Duran, Pablo Rojas, Milagros Añez, Roberto Rivas-Montenegro, Alejandra Angarita, Lissé Chacín, Maricarmen Cano, Clímaco |
dc.contributor.author.none.fl_str_mv |
Bermúdez, Valmore Salazar, Juan Fuenmayor, Jorge Nava, Manuel Ortega, Ángel Duran, Pablo Rojas, Milagros Añez, Roberto Rivas-Montenegro, Alejandra Angarita, Lissé Chacín, Maricarmen Cano, Clímaco |
dc.subject.eng.fl_str_mv |
Insulin resistance Hyperinsulinemia Metabolic syndrome Homeostatic model assessment Diabetes |
topic |
Insulin resistance Hyperinsulinemia Metabolic syndrome Homeostatic model assessment Diabetes |
description |
Background. Visceral adiposity is related to insulin resistance (IR), a metabolic state considered as a risk factor for other cardiometabolic diseases. In that matter, mathematical indexes such as the visceral adiposity index (VAI) and the lipid accumulation product (LAP) could indirectly assess IR based on visceral adiposity. Objective. To evaluate the association and diagnostic accuracy of VAI and LAP to diagnose IR in the adult population of Maracaibo city. Methods. This is a cross-sectional descriptive study with multistage sampling. Receiver operating characteristic (ROC) curves were built to determine VAI and LAP cutoff points to predict IR. A set of logistic regression models was constructed according to sociodemographic, psychobiologic, and metabolic variables. Results. 1818 subjects were evaluated (51.4% women). The area under the curve (AUC) values for LAP and VAI were 0.689 (0.665–0.714) and 0.645 (0.619–0.670), respectively. Both indexes showed a higher IR risk in the upper tertile in bivariate analysis. However, in the logistic regression analysis for the IR risk, only the 2nd (OR: 1.91; 95% CI: 1.37–2.65; ) and 3rd (OR: 5.40; 95% CI: 3.48–8.39; ) LAP tertiles showed a significant increase. This behaviour was also observed after adjusting for hs-C-reactive protein (hs-CPR). Conclusion. Although both indexes show a low predictive capacity in individuals with IR in the Maracaibo city population, the LAP index was more strongly associated with IR. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-15T14:59:29Z |
dc.date.available.none.fl_str_mv |
2021-09-15T14:59:29Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.spa.fl_str_mv |
Artículo científico |
dc.identifier.issn.none.fl_str_mv |
20900716 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/8389 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1155/2021/5514901 |
identifier_str_mv |
20900716 |
url |
https://hdl.handle.net/20.500.12442/8389 https://doi.org/10.1155/2021/5514901 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
Hindawi |
dc.source.eng.fl_str_mv |
Journal of Obesity |
dc.source.none.fl_str_mv |
Vol. 2021 |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/e9e2a4cd-13a4-4e4c-b3a7-e6e3e9892863/download https://bonga.unisimon.edu.co/bitstreams/68dae278-a073-436b-bd2c-45b68ce783eb/download https://bonga.unisimon.edu.co/bitstreams/d69af84f-2ce9-4127-949e-e0224e40f8e0/download https://bonga.unisimon.edu.co/bitstreams/fc7e8870-0448-4e03-9e7e-7cc3b176fc15/download https://bonga.unisimon.edu.co/bitstreams/05938936-2a3c-42c6-b646-0a36d237005c/download https://bonga.unisimon.edu.co/bitstreams/d041d126-ab6a-4ee0-82ce-93c7ff877fd1/download https://bonga.unisimon.edu.co/bitstreams/98e0241d-b090-47c7-81ec-0e9e6f499d5b/download |
bitstream.checksum.fl_str_mv |
39dff04c0c3af058044eac71cb99a7b1 733bec43a0bf5ade4d97db708e29b185 4460e5956bc1d1639be9ae6146a50347 56fbed6b197b223e7f0c18ba0d00caf2 4890d9bad08fe76db72db7759cf0a657 0510a045cfc1ff4e0e7b7b7077298199 a7e85584b0c64914c45b965087e8c9df |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076164415684608 |
spelling |
Bermúdez, Valmore29f9aa18-16a4-4fd3-8ce5-ed94a0b8663aSalazar, Juanfbd053e7-5aea-424c-812f-92153ecb9181Fuenmayor, Jorgebfa974a2-892d-464b-9536-e528f4b04931Nava, Manuelf9865b69-841a-4eea-b7da-6a174b033d10Ortega, Ángelb6a809bb-4d26-4e53-9419-e4eb9fb40a9bDuran, Pablo09ab4429-4e0a-42c4-a4e2-27b3560375bcRojas, Milagrosd07a9d4d-cce2-438c-b4a0-fc5ed4af1a67Añez, Roberto0a8ecfdc-a89a-4435-9859-b66bba8947faRivas-Montenegro, Alejandra4646037f-f634-44bd-9688-a2c0dadc854bAngarita, Lissécd37d36e-0d41-457f-9dc8-1ed5b9201b16Chacín, Maricarmen5c3b3d7c-4444-47e2-b2be-11f08df10409Cano, Clímacob7d55d6b-f1bf-4136-9b90-54a80ab90ab22021-09-15T14:59:29Z2021-09-15T14:59:29Z202120900716https://hdl.handle.net/20.500.12442/8389https://doi.org/10.1155/2021/5514901Background. Visceral adiposity is related to insulin resistance (IR), a metabolic state considered as a risk factor for other cardiometabolic diseases. In that matter, mathematical indexes such as the visceral adiposity index (VAI) and the lipid accumulation product (LAP) could indirectly assess IR based on visceral adiposity. Objective. To evaluate the association and diagnostic accuracy of VAI and LAP to diagnose IR in the adult population of Maracaibo city. Methods. This is a cross-sectional descriptive study with multistage sampling. Receiver operating characteristic (ROC) curves were built to determine VAI and LAP cutoff points to predict IR. A set of logistic regression models was constructed according to sociodemographic, psychobiologic, and metabolic variables. Results. 1818 subjects were evaluated (51.4% women). The area under the curve (AUC) values for LAP and VAI were 0.689 (0.665–0.714) and 0.645 (0.619–0.670), respectively. Both indexes showed a higher IR risk in the upper tertile in bivariate analysis. However, in the logistic regression analysis for the IR risk, only the 2nd (OR: 1.91; 95% CI: 1.37–2.65; ) and 3rd (OR: 5.40; 95% CI: 3.48–8.39; ) LAP tertiles showed a significant increase. This behaviour was also observed after adjusting for hs-C-reactive protein (hs-CPR). Conclusion. Although both indexes show a low predictive capacity in individuals with IR in the Maracaibo city population, the LAP index was more strongly associated with IR.pdfengHindawiAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of ObesityVol. 2021Insulin resistanceHyperinsulinemiaMetabolic syndromeHomeostatic model assessmentDiabetesLipid Accumulation Product Is More Related to Insulin Resistance than the Visceral Adiposity Index in the Maracaibo City Population, Venezuelainfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1J. Rojas, V. Berm´udez, E. Leal et al., “Insulinorresistencia e hiperinsulinemia como factores de riesgo para enfermedad cardiovascular,” International Journal of Diabetes in Developing Countries, vol. 2, no. 3, pp. 53–64, 2012R. Liu, K. K. Christoffel, W. J. Brickman et al., “Do static and dynamic insulin resistance indices perform similarly in predicting pre-diabetes and type 2 diabetes?” Diabetes Research and Clinical Practice, vol. 105, no. 2, pp. 245–250, 2014R. A. DeFronzo, J. D. Tobin, and R. Andres, “Glucose clamp technique: a method for quantifying insulin secretion and resistance,” American Journal of Physiology-Endocrinology and Metabolism, vol. 237, no. 3, pp. E214–E223, 1979J. Otten, B. Ahren, and T. Olsson, “Surrogate measures of ´ insulin sensitivity vs the hyperinsulinaemic-euglycaemic clamp: a meta-analysis,” Diabetologia, vol. 57, no. 9, pp. 1781–1788, 2014B. Ji, H. Qu, H. Wang, H. Wei, and H. Deng, “Association between the visceral adiposity index and homeostatic model assessment of insulin resistance in participants with normal waist circumference,” Angiology, vol. 68, no. 8, pp. 716–721, 2017V. J. Berm´udez, J. Salazar, R. Añez et al., “Optimal cutoff for visceral adiposity index in a Venezuelan population: results from the Maracaibo city metabolic syndrome prevalence study,” Revista Argentina de Endocrinolog´ıa y Metabolismo, vol. 54, no. 4, pp. 176–183, 2017P. Mathieu, P. Poirier, P. Pibarot, I. Lemieux, and J.-P. Despres, “Visceral obesity: the link among inflammation, ´ hypertension, and cardiovascular disease,” Hypertension (Dallas, Tex: 1979), vol. 53, no. 4, pp. 577–584, 2009D. Dai, Y. Chang, Y. Chen et al., “Visceral adiposity index and lipid accumulation product index: two alternate body indices to identify chronic kidney disease among the rural population in northeast China,” International Journal of Environmental Research and Public Health, vol. 13, no. 12, p. 1231, 2016J. Wu, L. Gong, Q. Li et al., “A novel visceral adiposity index for prediction of type 2 diabetes and pre-diabetes in Chinese adults: a 5 year prospective study,” Scientific Reports, vol. 7, no. 1, p. 13784, 2017.Z. Biyik and I. Guney, “Lipid accumulation product and visceral adiposity ındex: two new indices to predict metabolic syndrome in chronic kidney disease,” European Review for Medical and Pharmacological Sciences, vol. 23, no. 5, pp. 2167–2173, 2019X. Huang, Q. Wang, T. Liu et al., “Body fat indices as effective predictors of insulin resistance in obese/non-obese polycystic ovary syndrome women in the Southwest of China,” Endocrine, vol. 65, no. 1, pp. 81–85, 2019V. Berm´udez, R. P. Marcano, C. Cano et al., “,e Maracaibo city metabolic syndrome prevalence study: design and scope,” American Journal of Gerapeutics, vol. 17, no. 3, pp. 288–294, 2010.H. Mendez Castellano and M. de M ´ endez, “Estratificaci ´ on´ social y biolog´ıa humana: metodo Graffar modificado,” ´ Arch Venez Pueric Pediatrics, vol. 49, no. 3, pp. 93–104, 1986.V. Berm´udez, “Smoking habit in adult population from Maracaibo city, Venezuela,” International Journal of Respiratory and Pulmonary Medicine, vol. 3, no. 4, p. 61, 2016.Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ), 2005, http://www. IPAQ.ki.sehttps://www.researchgate.net/publication/267932370_ Guidelines_for_data_processing_and_analysis_of_the_ International_Physical_Activity_Questionnaire_IPAQ2005_ URL_httpwwwIPAQkiseV. Berm´udez, Y. Torres, V. Apruzzese et al., “Alcohol drinking patterns in the adult population from the Maracaibo municipality, Zulia—Venezuela,” Revista Latinoamericana de Hipertension, vol. 9, no. 1, pp. 21–28, 2014.Health Statistics, NHANES III Reference Manuals and Reports (CDROM), Centers for Disease Control and Prevention, Atlanta, GA, USA, 1996, https://wwwn.cdc.gov/nchs/data/ nhanes3/manuals/.K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009.J. C. Levy, D. R. Matthews, and M. P. Hermans, “Correct homeostasis model assessment (HOMA) evaluation uses the computer program,” Diabetes Care, vol. 21, no. 12, pp. 2191-2192, 1998V. Berm´udez, J. Rojas, M. S. Mart´ınez et al., “Epidemiologic behavior and estimation of an optimal cut-off point for homeostasis model assessment-2 insulin resistance: a report from a Venezuelan population,” International Scholarly Research Notices, vol. 2014, Article ID 616271, 10 pages, 2014.V. Berm´udez, M. Cabrera, L. Mendoza et al., “High-sensitivity c-reactive protein epidemiological behavior in adult individuals from Maracaibo, Venezuela,” Revista Latinoamericana de Hipertension, vol. 8, no. 1, pp. 22–29, 2015.M. C. Amato, C. Giordano, M. Galia et al., “Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk,” Diabetes Care, vol. 33, no. 4, pp. 920–922, 2010H. S. Kahn, “,e “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison,” BMC Cardiovascular Disorders, vol. 5, no. 1, p. 26, 2005X. Robin, N. Turck, A. Hainard et al., “pROC: an open-source package for R and S+ to analyze and compare ROC curves,” BMC Bioinformatics, vol. 12, no. 1, p. 77, 2011.H. S. Kahn, “,e lipid accumulation product is better than BMI for identifying diabetes: a population-based comparison,” Diabetes Care, vol. 29, no. 1, pp. 151–153, 2006S. Pekgor, C. Duran, U. Berberoglu, and M. A. Eryilmaz, “,e role of visceral adiposity index levels in predicting the presence of metabolic syndrome and insulin resistance in overweight and obese patients,” Metabolic Syndrome and Related Disorders, vol. 17, no. 5, pp. 296–302, 2019C. M. de Oliveira, J. Pavani, J. E. Krieger, R. de Oliveira Alvim, C. A. Mourão-Junior, and A. da Costa Pereira, “Body adiposity index in assessing the risk of type 2 diabetes mellitus development: the baependi heart study,” Diabetology & Metabolic Syndrome, vol. 11, no. 1, p. 76, 2019.G. A. Abruzzese, G. E. Cerrrone, J. M. Gamez et al., “Lipid accumulation product (LAP) and visceral adiposity index (VAI) as markers of insulin resistance and metabolic associated disturbances in young argentine women with polycystic ovary syndrome,” Hormone and Metabolic Research � Hormon- and Stoffwechselforschung � Hormones et Metabolisme, vol. 49, no. 1, pp. 23–29, 2017K. Baveicy, S. Mostafaei, M. Darbandi, B. Hamzeh, F. Najafi, and Y. Pasdar, “Predicting metabolic syndrome by visceral adiposity index, body roundness index and a body shape index in adults: a cross-sectional study from the Iranian RaNCD cohort data,” Diabetes, Metabolic Syndrome and Obesity: Targets and Gerapy, vol. 13, pp. 879–887, 2020.M. E. Zaki, S. Kamal, H. Reyad et al., “,e validity of body adiposity indices in predicting metabolic syndrome and its components among Egyptian women,” Open Access Macedonian Journal of Medical Sciences, vol. 4, no. 1, pp. 25–30, 2016N. Ahn, S. E. Baumeister, U. Amann et al., “Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes,” Scientific Reports, vol. 9, no. 1, p. 9693, 2019T. V. Fiorentino, M. A. Marini, E. Succurro, F. Andreozzi, and G. Sesti, “Relationships of surrogate indexes of insulin resistance with insulin sensitivity assessed by euglycemic hyperinsulinemic clamp and subclinical vascular damage,” BMJ Open Diabetes Research & Care, vol. 7, no. 1, Article ID e000911, 2019M. Mazidi, A.-P. Kengne, N. Katsiki, D. P. Mikhailidis, and M. Banach, “Lipid accumulation product and triglycerides/ glucose index are useful predictors of insulin resistance,” Journal of Diabetes and its Complications, vol. 32, no. 3, pp. 266–270, 2018B. Kim, H. Y. Choi, W. Kim et al., “,e cut-off values of surrogate measures for insulin resistance in the Korean population according to the Korean genome and epidemiology study (KOGES),” PLoS One, T. Muka, Ed., vol. 13, no. 11, Article ID e0206994, 2018.L.-K. Er, S. Wu, H.-H. Chou et al., “Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals,” PLoS One, vol. 11, no. 3, Article ID e0149731, 2016.G. Anik Ilhan, B. Yildizhan, and T. Pekin, “,e impact of lipid accumulation product (LAP) and visceral adiposity index (VAI) on clinical, hormonal and metabolic parameters in lean women with polycystic ovary syndrome,” Gynecological Endocrinology, vol. 35, no. 3, pp. 233–236, 2019.J.-Y. Oh, Y.-A. Sung, and H. J. Lee, “,e lipid accumulation product as a useful index for identifying abnormal glucose regulation in young Korean women,” Diabetic Medicine, vol. 30, no. 4, pp. 436–442, 2013.C. Xia, R. Li, S. Zhang et al., “Lipid accumulation product is a powerful index for recognizing insulin resistance in nondiabetic individuals,” European Journal of Clinical Nutrition, vol. 66, no. 9, pp. 1035–1038, 2012.M. Velasco, “Lipid accumulation product (LAP) and visceral adiposity index (VAI) a simple and clinically useful surrogate marker for metabolic syndrome and cardiovascular disease predictor in non-diabetic Venezuelan adults,” Journal of Pharma & Pharmaceutical Sciences, vol. 2, no. 1, pp. 1–8, 2017.T. Du, G. Yuan, M. Zhang, X. Zhou, X. Sun, and X. Yu, “Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance,” Cardiovascular Diabetology, vol. 13, no. 1, p. 146, 2014.J. D. Sparks, C. E. Sparks, and K. Adeli, “Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia,” Arteriosclerosis, Grombosis, and Vascular Biology, vol. 32, no. 9, pp. 2104–2112, 2012.D. Santoleri and P. M. Titchenell, “Resolving the paradox of hepatic insulin resistance,” Cellular and Molecular Gastroenterology and Hepatology, vol. 7, no. 2, pp. 447–456, 2019.M. Aslam, S. Aggarwal, K. K. Sharma, V. Galav, and S. V. Madhu, “Postprandial hypertriglyceridemia predicts development of insulin resistance glucose intolerance and type 2 diabetes,” PLoS One, vol. 11, no. 1, Article ID e0145730, 2016X. Bi, Y. T. Loo, and C. J. Henry, “Ultrasound measurement of intraabdominal fat thickness as a predictor of insulin resistance and low HDL cholesterol in Asians,” Nutrition, vol. 55- 56, pp. 99–103, 2018S. Klein, D. B. Allison, S. B. Heymsfield et al., “Waist circumference and cardiometabolic risk: a consensus statement from shaping America’s health: association for weight management and obesity prevention; NAASO, the obesity society; the American society for nutrition; and the American diabetes association,” Diabetes Care, vol. 30, no. 6, pp. 1647–1652, 2007C. Zou and J. Shao, “Role of adipocytokines in obesity-associated insulin resistance,” Ge Journal of Nutritional Biochemistry, vol. 19, no. 5, pp. 277–286, 2008.X.-F. Zhuang, M.-M. Zhao, C.-L. Weng, and N.-L. Sun, “Adipocytokines: a bridge connecting obesity and insulin resistance,” Medical Hypotheses, vol. 73, no. 6, pp. 981–985, 2009.K. Verboven, K. Wouters, K. Gaens et al., “Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans,” Scientific Reports, vol. 8, no. 1, p. 4677, 2018.M. D. Jensen, “Adipose tissue as an endocrine organ: implications of its distribution on free fatty acid metabolism,” European Heart Journal Supplements, vol. 8, no. suppl_B, 2006J. Rojas, V. Bermudez, R. Añez et al., “Comportamiento Epidemiologico del s ´ ´ındrome metabolico en el municipio ´ Maracaibo-Venezuela,” Sindrome Cardiometabolico. ´ , vol. 3, no. 2, pp. 31–42, 2013ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1448077https://bonga.unisimon.edu.co/bitstreams/e9e2a4cd-13a4-4e4c-b3a7-e6e3e9892863/download39dff04c0c3af058044eac71cb99a7b1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/68dae278-a073-436b-bd2c-45b68ce783eb/download733bec43a0bf5ade4d97db708e29b185MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/d69af84f-2ce9-4127-949e-e0224e40f8e0/download4460e5956bc1d1639be9ae6146a50347MD52TEXTLipid-Accumulation-Product_related-to_Insuline-Resistance.pdf.txtLipid-Accumulation-Product_related-to_Insuline-Resistance.pdf.txtExtracted texttext/plain36455https://bonga.unisimon.edu.co/bitstreams/fc7e8870-0448-4e03-9e7e-7cc3b176fc15/download56fbed6b197b223e7f0c18ba0d00caf2MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain38188https://bonga.unisimon.edu.co/bitstreams/05938936-2a3c-42c6-b646-0a36d237005c/download4890d9bad08fe76db72db7759cf0a657MD56THUMBNAILLipid-Accumulation-Product_related-to_Insuline-Resistance.pdf.jpgLipid-Accumulation-Product_related-to_Insuline-Resistance.pdf.jpgGenerated Thumbnailimage/jpeg17352https://bonga.unisimon.edu.co/bitstreams/d041d126-ab6a-4ee0-82ce-93c7ff877fd1/download0510a045cfc1ff4e0e7b7b7077298199MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5413https://bonga.unisimon.edu.co/bitstreams/98e0241d-b090-47c7-81ec-0e9e6f499d5b/downloada7e85584b0c64914c45b965087e8c9dfMD5720.500.12442/8389oai:bonga.unisimon.edu.co:20.500.12442/83892024-08-14 21:54:29.862http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |