Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta's Ciénaga Grande
Water purification is indispensable to guarantee safe human consumption and to prevent diseases caused by the ingestion of contaminated water. This requires a series of water treatment processes which require investment. However, the economic limitations of rural communities hinder their ability to...
- Autores:
-
Lugo Arias, José
Burgos Vergara, Javier
Lugo Arias, Elkyn
Gould, Audrey
Ovallos Gazabon, David
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/4501
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/4501
- Palabra clave:
- Water treatment
Green engineering
Environmental chemical engineering
Environmental health
Public health
Ciénaga Grande of Santa Marta
Low-cost water purification
Stilt house villages
Non-conventional treatment
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_20fd3681f8c91fccd600175f806480ce |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/4501 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta's Ciénaga Grande |
title |
Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta's Ciénaga Grande |
spellingShingle |
Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta's Ciénaga Grande Water treatment Green engineering Environmental chemical engineering Environmental health Public health Ciénaga Grande of Santa Marta Low-cost water purification Stilt house villages Non-conventional treatment |
title_short |
Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta's Ciénaga Grande |
title_full |
Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta's Ciénaga Grande |
title_fullStr |
Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta's Ciénaga Grande |
title_full_unstemmed |
Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta's Ciénaga Grande |
title_sort |
Evaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta's Ciénaga Grande |
dc.creator.fl_str_mv |
Lugo Arias, José Burgos Vergara, Javier Lugo Arias, Elkyn Gould, Audrey Ovallos Gazabon, David |
dc.contributor.author.none.fl_str_mv |
Lugo Arias, José Burgos Vergara, Javier Lugo Arias, Elkyn Gould, Audrey Ovallos Gazabon, David |
dc.subject.eng.fl_str_mv |
Water treatment Green engineering Environmental chemical engineering Environmental health Public health Ciénaga Grande of Santa Marta Low-cost water purification Stilt house villages Non-conventional treatment |
topic |
Water treatment Green engineering Environmental chemical engineering Environmental health Public health Ciénaga Grande of Santa Marta Low-cost water purification Stilt house villages Non-conventional treatment |
description |
Water purification is indispensable to guarantee safe human consumption and to prevent diseases caused by the ingestion of contaminated water. This requires a series of water treatment processes which require investment. However, the economic limitations of rural communities hinder their ability to implement such water-treatment systems, as is the case in Ci enaga Grande of Santa Marta (“Large Swamp”, in English) in Colombia. Low-cost systems can be used instead as simple and safe alternatives. Therefore, the objective of this work was to evaluate non-conventional, low-cost water processes to purify the water from the collection point of two stilt house villages in Ci enaga Grande of Santa Marta. These include: 1) Using two natural coagulants, Moringa Oleifera and Cassia Fistula; 2) filtration through a biosand filter and a carbon activated filter; and 3) disinfection through UV-C Radiation and through solar disinfection. The results showed a turbidity values reduction between 52% and 96% using the two natural coagulants; both turbidity and total coliforms achieved reductions of 98.4% and 76.9%, respectively in the filtration process; and removal of total coliforms up to 98.8% in the disinfection process. Despite the high rates of reduction in the different parameters, the water does not comply with the recommended limits for safe drinking water. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-01-14T15:10:50Z |
dc.date.available.none.fl_str_mv |
2020-01-14T15:10:50Z |
dc.date.issued.none.fl_str_mv |
2020-01 |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
24058440 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/4501 |
identifier_str_mv |
24058440 |
url |
https://hdl.handle.net/20.500.12442/4501 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
Heliyon |
dc.source.none.fl_str_mv |
Vol. 6 N° 1 (2020) |
institution |
Universidad Simón Bolívar |
dc.source.uri.none.fl_str_mv |
10.1016/j.heliyon.2019.e03062 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/dc731ff5-5911-43aa-84d2-700ae8470a9b/download https://bonga.unisimon.edu.co/bitstreams/4fd0ee6f-7f09-4a62-8e07-5000e2d57804/download https://bonga.unisimon.edu.co/bitstreams/10ee8717-4cd5-4031-9816-79eca5846fff/download https://bonga.unisimon.edu.co/bitstreams/14c845c4-d95b-40f4-8cf5-14edc3610143/download https://bonga.unisimon.edu.co/bitstreams/f361f2ed-da4b-4a8e-996d-45266b8b3a41/download https://bonga.unisimon.edu.co/bitstreams/76d92ed9-d5c3-42ea-8ef7-39ce2f72cd88/download https://bonga.unisimon.edu.co/bitstreams/d7afe2d3-91cd-43c2-9c55-5b3c7d274ce7/download |
bitstream.checksum.fl_str_mv |
c8c905640eba8b978c4102a79a1f9c00 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 3e0b9a7a0b799a80646edb637295dacf 6e9417181a35ff928c251e1ebc2d13a0 c6c996dc892f6b494c50d0d4252516dc 539b964e8e2e55ea360f68c1cac0ce95 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076129295728640 |
spelling |
Lugo Arias, José134e3d0a-4185-4492-9918-e986c51e27cbBurgos Vergara, Javierfe085dc9-1ff7-4f0e-b655-5613d46437a9Lugo Arias, Elkyn82c4ba89-8615-40e9-b609-ca05c6203edfGould, Audrey53d8421a-fce9-4c4f-9971-bcdb8f880628Ovallos Gazabon, David1fb7bf27-fa54-4eca-84b0-d5e0d14fb6022020-01-14T15:10:50Z2020-01-14T15:10:50Z2020-0124058440https://hdl.handle.net/20.500.12442/4501Water purification is indispensable to guarantee safe human consumption and to prevent diseases caused by the ingestion of contaminated water. This requires a series of water treatment processes which require investment. However, the economic limitations of rural communities hinder their ability to implement such water-treatment systems, as is the case in Ci enaga Grande of Santa Marta (“Large Swamp”, in English) in Colombia. Low-cost systems can be used instead as simple and safe alternatives. Therefore, the objective of this work was to evaluate non-conventional, low-cost water processes to purify the water from the collection point of two stilt house villages in Ci enaga Grande of Santa Marta. These include: 1) Using two natural coagulants, Moringa Oleifera and Cassia Fistula; 2) filtration through a biosand filter and a carbon activated filter; and 3) disinfection through UV-C Radiation and through solar disinfection. The results showed a turbidity values reduction between 52% and 96% using the two natural coagulants; both turbidity and total coliforms achieved reductions of 98.4% and 76.9%, respectively in the filtration process; and removal of total coliforms up to 98.8% in the disinfection process. Despite the high rates of reduction in the different parameters, the water does not comply with the recommended limits for safe drinking water.pdfengElsevierAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2HeliyonVol. 6 N° 1 (2020)10.1016/j.heliyon.2019.e03062Water treatmentGreen engineeringEnvironmental chemical engineeringEnvironmental healthPublic healthCiénaga Grande of Santa MartaLow-cost water purificationStilt house villagesNon-conventional treatmentEvaluation of low-cost alternatives for water purification in the stilt house villages of Santa Marta's Ciénaga Grandearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Altenburger, R., Ait-Aissa, S., Antczak, P., Backhaus, T., Barcel o, D., Seiler, T.B., et al., 2015. Future water quality monitoring—adapting tools to deal with mixtures of pollutants in water resource management. Sci. Total Environ. 512, 540–551.APHA, AWWA, WEF, 1995. Standard Methods for the Examination of Water and Wastewater, nineteenth ed. American Public Health Association, Washington DC.AWWA, 1999. Water Quality and Treatment: A Handbook of Community Water Supplies, fifth ed. McGraw-Hill, New York.Babu, R., Chaudhuri, M., 2005. Home water treatment by direct filtration with natural coagulant. J. Water Health 3, 27–30.Betatache, H., Aouabed, A., Drouiche, N., Lounici, H., 2014. Conditioning of sewage sludge by prickly pear cactus (Opuntia ficus Indica) juice. Ecol. Eng. 70, 465–469.Cancio, E., Narv aez, J., Blanco, J., 2006. Din amica poblacional del Coroncoro Micropogonias furnieri (Pisces: Sciaenidae) en la Ci enaga Grande de Santa Marta. Bol. Invest. Mar. Costeras 35, 37–58.D’Alessio, M., El-Swaify, G., Yoneyama, B., Ray, C., 2016. A low-cost water-treatment system for potable water supplies in developing countries and after a natural disaster: ability to remove total coliforms and E. coli. Clean Technol. Environ. Policy 18 (3), 925–934.Fabiszewski, A., Stauber, C., Walters, A., Meza, R., Sobsey, M., 2012. A randomized controlled trial of the plastic-housing BioSand filter and its impact on diarrheal disease in Copan, Honduras. Am. J. Trop. Med. Hyg. 86 (6), 913–921.Kostyla, C., Bain, R., Cronk, R., Bartram, J., 2015. Seasonal variation of fecal contamination in drinking water sources in developing countries: a systematic review. Sci. Total Environ. 514, 333–343.Kusuma, M.N., Hadi, W., Wirjodirdjo, B., 2018. Preliminary study of infiltration gallery for water treatment towards Universal Access 2019 in Indonesia. Soil Environ. 37 (1), 83–88.Restrepo, J., Escobar, H., 2016. Sediment load trends in the Magdalena River basin (1980–2010): anthropogenic and climate-induced causes. Geomorphology 302, 76–91.Schreiber, C., Rechenburg, A., Rind, E., Kistemann, T., 2015. The impact of land use on microbial surface water pollution. Int. J. Hyg Environ. Health 218, 181–187.Stauber, C., Printy, E., McCarty, F., Liang, K., Sobsey, M., 2012. Cluster randomized controlled trial of the plastic BioSand water filter in Cambodia. Environ. Sci. Technol. 46 (2), 722–728.Timothy, F., Matthew, S., Cachro, V., Muñoz, A., 2014. The effect of increasing grain size in biosand water filters in combination with ultraviolet disinfection. J. Water, Sanit. Hyg. Dev. 4 (2), 206–213.WHO, 2008. Guidelines for Drinking-Water Quality, third ed. World Health Organization, Geneva https://www.who.int/water_sanitation_health/dwq/fulltext.pdf. (Accessed 10 September 2019).WHO, 2019. Drinking-water: Key Facts. https://www.who.int/news-room/fact-sheets /detail/drinking-water. (Accessed 10 September 2019).Yao, W., Xu, J., 2013. Impact of human activity and climate change on suspended sediment load: the upper Yellow River, China. Environ. Earth Sci. 70, 1389–1403.Yin, C., 2010. Emering usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 45, 1437–1444.Zhang, R., Liu, Y., He, M., Su, Y., Zhao, X., Elimelech, M., Jiang, Z., 2016. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 45 (21), 5888–5924.Guzm an, L., Taron, A., Núñez, A., 2015. Polvo de la semilla Cassia fistula como coagulante natural en el tratamiento de agua cruda. Biotecnología en el Sector Agropecuario y Agroindustrial 13 (2), 123–129.Lugo, J., Lugo, E., Vargas, S., Landazury-Villalba, L., Castro, J., 2019a. Evaluaci on de la calidad microbiológica de agua potable de dos pueblos palafíticos de la Ci enaga Grande de Santa Marta. In: Chirinos, Y. (Ed.), Tendencias en la Investigación Universitaria (Una visión desde Latinoam erica). Universidad Polit ecnica Territorial de Falc on Alonso Gamero, Santa Ana de Coro, pp. 122–133. https://investigacionupt ag.wordpress.com/.Lugo, J., Lugo, E., Burgos, J., Crespo, D., Castro, J., 2019b. Efectos del cambio climático sobre las tasas de transporte de sedimentos en grandes ríos: Una Revisi on. In: Chirinos, Y. (Ed.), Tendencias en la Investigaci on Universitaria (Una visión desde Latinoam erica). Universidad Polit ecnica Territorial de Falc on Alonso Gamero, Santa Ana de Coro, pp. 38–52. https://investigacionuptag.wordpress.com/.Lugo, J., Lugo, E., 2018. Beneficios socio ambientales por potabilizaci on del agua en los pueblos palafíticos de la Ciénaga Grande de Santa Marta-Colombia. Rev. U.D.C.A Act. & Div. Cient. 21 (1), 259–264.Mu~noz, M., Orrego, L., Mu~noz, D., Lozano, C., Guzman, D., Escobar, M., et al., 2014. Efecto microbicida de la radiación solar (SODIS) combinado con Artemisia annua. DYNA 81 (184), 71–76.Sarmiento, J., 2015. Territorio sin Estado. El caso de los pueblos palafíticos en la Ci enaga Grande de Santa Marta. Rev. Derecho 43, 110–157.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf2783399https://bonga.unisimon.edu.co/bitstreams/dc731ff5-5911-43aa-84d2-700ae8470a9b/downloadc8c905640eba8b978c4102a79a1f9c00MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/4fd0ee6f-7f09-4a62-8e07-5000e2d57804/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/10ee8717-4cd5-4031-9816-79eca5846fff/download733bec43a0bf5ade4d97db708e29b185MD53TEXTEvaluationoflowcostalternativesforwaterpurificationinthestilthouse.pdf.txtEvaluationoflowcostalternativesforwaterpurificationinthestilthouse.pdf.txtExtracted texttext/plain44449https://bonga.unisimon.edu.co/bitstreams/14c845c4-d95b-40f4-8cf5-14edc3610143/download3e0b9a7a0b799a80646edb637295dacfMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain52048https://bonga.unisimon.edu.co/bitstreams/f361f2ed-da4b-4a8e-996d-45266b8b3a41/download6e9417181a35ff928c251e1ebc2d13a0MD56THUMBNAILEvaluationoflowcostalternativesforwaterpurificationinthestilthouse.pdf.jpgEvaluationoflowcostalternativesforwaterpurificationinthestilthouse.pdf.jpgGenerated Thumbnailimage/jpeg1717https://bonga.unisimon.edu.co/bitstreams/76d92ed9-d5c3-42ea-8ef7-39ce2f72cd88/downloadc6c996dc892f6b494c50d0d4252516dcMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5563https://bonga.unisimon.edu.co/bitstreams/d7afe2d3-91cd-43c2-9c55-5b3c7d274ce7/download539b964e8e2e55ea360f68c1cac0ce95MD5720.500.12442/4501oai:bonga.unisimon.edu.co:20.500.12442/45012024-08-14 21:53:15.923http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |