Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus

The aim of this study was to identity in silico the relationships among microRNAs (miRNAs) and genes encoding transcription factors, ubiquitylation, DNA methylation, and histone modifications in systemic lupus erythematosus (SLE). To identify miRNA dysregulation in SLE, we used miR2Disease and Pheno...

Full description

Autores:
Navarro Quiroz, Elkin
Navarro Quiroz, Roberto
Pacheco Lugo, Lisandro
Aroca Martínez, Gustavo
Gómez Escorcia, Lorena
Gonzalez Torres, Henry
Cadena Bonfanti, Andres
Marmolejo, Maria del Carmen
Sanchez, Eduardo
Villarreal Camacho, Jose Luis
Lorenzi, Hernan
Torres, Augusto
Navarro, Kelvin Fernando
Navarro Rodriguez, Pablo
Villa, Joe Luis
Fernández- Ponce, Cecilia
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/3358
Acceso en línea:
https://hdl.handle.net/20.500.12442/3358
Palabra clave:
MicroRNAs
Systemic lupus erythematosus
DNA methylation
Post-translational modification
Epigenetics
Transcription factors
Gene regulation
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_2045b0f82588eaa537ef02e1bbf1b419
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/3358
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus
title Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus
spellingShingle Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus
MicroRNAs
Systemic lupus erythematosus
DNA methylation
Post-translational modification
Epigenetics
Transcription factors
Gene regulation
title_short Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus
title_full Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus
title_fullStr Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus
title_full_unstemmed Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus
title_sort Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus
dc.creator.fl_str_mv Navarro Quiroz, Elkin
Navarro Quiroz, Roberto
Pacheco Lugo, Lisandro
Aroca Martínez, Gustavo
Gómez Escorcia, Lorena
Gonzalez Torres, Henry
Cadena Bonfanti, Andres
Marmolejo, Maria del Carmen
Sanchez, Eduardo
Villarreal Camacho, Jose Luis
Lorenzi, Hernan
Torres, Augusto
Navarro, Kelvin Fernando
Navarro Rodriguez, Pablo
Villa, Joe Luis
Fernández- Ponce, Cecilia
dc.contributor.author.none.fl_str_mv Navarro Quiroz, Elkin
Navarro Quiroz, Roberto
Pacheco Lugo, Lisandro
Aroca Martínez, Gustavo
Gómez Escorcia, Lorena
Gonzalez Torres, Henry
Cadena Bonfanti, Andres
Marmolejo, Maria del Carmen
Sanchez, Eduardo
Villarreal Camacho, Jose Luis
Lorenzi, Hernan
Torres, Augusto
Navarro, Kelvin Fernando
Navarro Rodriguez, Pablo
Villa, Joe Luis
Fernández- Ponce, Cecilia
dc.subject.eng.fl_str_mv MicroRNAs
Systemic lupus erythematosus
DNA methylation
Post-translational modification
Epigenetics
Transcription factors
Gene regulation
topic MicroRNAs
Systemic lupus erythematosus
DNA methylation
Post-translational modification
Epigenetics
Transcription factors
Gene regulation
description The aim of this study was to identity in silico the relationships among microRNAs (miRNAs) and genes encoding transcription factors, ubiquitylation, DNA methylation, and histone modifications in systemic lupus erythematosus (SLE). To identify miRNA dysregulation in SLE, we used miR2Disease and PhenomiR for information about miRNAs exhibiting differential regulation in disease and other biological processes, and HMDD for information about experimentally supported human miRNA–disease association data from genetics, epigenetics, circulating miRNAs, and miRNA–target interactions. This information was incorporated into the miRNA analysis. High-throughput sequencing revealed circulating miRNAs associated with kidney damage in patients with SLE. As the main finding of our in silico analysis of miRNAs differentially expressed in SLE and their interactions with disease-susceptibility genes, post-translational modifications, and transcription factors; we highlight 226 miRNAs associated with genes and processes. Moreover, we highlight that alterations of miRNAs such as hsa-miR-30a-5p, hsa-miR-16-5p, hsa-miR-142-5p, and hsa-miR-324-3p are most commonly associated with post-translational modifications. In addition, altered miRNAs that are most frequently associated with susceptibility-related genes are hsa-miR-16-5p, hsamiR- 374a-5p, hsa-miR-34a-5p, hsa-miR-31-5p, and hsa-miR-1-3p.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-06-26T14:34:14Z
dc.date.available.none.fl_str_mv 2019-06-26T14:34:14Z
dc.date.issued.none.fl_str_mv 2019
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 19326203
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/3358
identifier_str_mv 19326203
url https://hdl.handle.net/20.500.12442/3358
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Public Library of Science
dc.publisher.none.fl_str_mv Facultad de Ciencias Básicas y Biomédicas
publisher.none.fl_str_mv Facultad de Ciencias Básicas y Biomédicas
dc.source.eng.fl_str_mv PLoS ONE
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://doi.org/10.1371/journal.pone.0218116
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/81943364-bf93-4068-bfb1-a07e3e2fb098/download
https://bonga.unisimon.edu.co/bitstreams/e83cea20-0e91-4b90-8e94-cdf11dedc0df/download
https://bonga.unisimon.edu.co/bitstreams/9f05178f-3e7e-45bf-99b4-0fe34c72abeb/download
https://bonga.unisimon.edu.co/bitstreams/5dff6d3d-ef9c-410e-9b05-45012286a6fc/download
https://bonga.unisimon.edu.co/bitstreams/a92b5f24-7688-4a1c-a2a1-cfadc38433a5/download
https://bonga.unisimon.edu.co/bitstreams/e3326f15-9fa9-4a84-a1cb-fddfd4209256/download
https://bonga.unisimon.edu.co/bitstreams/b1ab2300-5f42-47b7-8b37-5a7e4a27af16/download
https://bonga.unisimon.edu.co/bitstreams/0aa2b9e0-be93-4269-8870-323528aa1038/download
https://bonga.unisimon.edu.co/bitstreams/f9a12675-4b56-411b-850a-5a7146f92ab3/download
bitstream.checksum.fl_str_mv c98bcd83be903ef6c16d3be1dc23645b
4460e5956bc1d1639be9ae6146a50347
3fdc7b41651299350522650338f5754d
e67aa3db58e139220776eb62cb6b423b
3e3ff1065f1ea144fceb07d047f3af1b
3e3ff1065f1ea144fceb07d047f3af1b
262bc25abc6640cff0ba3623f057b1f7
4ae587b1eb46c85fc98b01b48b2e0dfb
4ae587b1eb46c85fc98b01b48b2e0dfb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076085197864960
spelling Navarro Quiroz, Elkind586f4e1-e86b-4364-8aa2-1b1dc7c1bb5eNavarro Quiroz, Roberto1246844f-5707-438a-808b-1f8c2761977ePacheco Lugo, Lisandro51b70dab-9baa-4f8f-afc1-f2b44b87c346Aroca Martínez, Gustavod6bf7d66-bf9b-492a-be14-677f6ecdad05Gómez Escorcia, Lorena0f8da4a7-1326-4e31-9e08-4432548de4e7Gonzalez Torres, Henryc4a88cdf-b874-40af-badc-44d95f4856dfCadena Bonfanti, Andres72c24732-5739-4168-87d9-1ab282d7aefeMarmolejo, Maria del Carmen3132348a-d45c-433a-8998-ca384cd1a793Sanchez, Eduardo2f819d13-0ebe-4409-bb5e-7ecae0ee228eVillarreal Camacho, Jose Luis1dad5bfb-4ebb-4349-9646-d7c59903efa9Lorenzi, Hernane22cc7be-66f8-4f39-b091-bd2baa379c22Torres, Augusto6c10ae2d-f8e7-488b-b1a8-08897ae077f3Navarro, Kelvin Fernando27ec06a8-dbb0-495f-8a52-0986cacf8586Navarro Rodriguez, Pablo24262391-acf2-4619-b648-7e950c46d84bVilla, Joe Luisf9e76941-0eaf-435c-8c73-64b74c297e8cFernández- Ponce, Ceciliaebeb5265-1ad1-4356-a223-c14b80991bf22019-06-26T14:34:14Z2019-06-26T14:34:14Z201919326203https://hdl.handle.net/20.500.12442/3358The aim of this study was to identity in silico the relationships among microRNAs (miRNAs) and genes encoding transcription factors, ubiquitylation, DNA methylation, and histone modifications in systemic lupus erythematosus (SLE). To identify miRNA dysregulation in SLE, we used miR2Disease and PhenomiR for information about miRNAs exhibiting differential regulation in disease and other biological processes, and HMDD for information about experimentally supported human miRNA–disease association data from genetics, epigenetics, circulating miRNAs, and miRNA–target interactions. This information was incorporated into the miRNA analysis. High-throughput sequencing revealed circulating miRNAs associated with kidney damage in patients with SLE. As the main finding of our in silico analysis of miRNAs differentially expressed in SLE and their interactions with disease-susceptibility genes, post-translational modifications, and transcription factors; we highlight 226 miRNAs associated with genes and processes. Moreover, we highlight that alterations of miRNAs such as hsa-miR-30a-5p, hsa-miR-16-5p, hsa-miR-142-5p, and hsa-miR-324-3p are most commonly associated with post-translational modifications. In addition, altered miRNAs that are most frequently associated with susceptibility-related genes are hsa-miR-16-5p, hsamiR- 374a-5p, hsa-miR-34a-5p, hsa-miR-31-5p, and hsa-miR-1-3p.engPublic Library of ScienceFacultad de Ciencias Básicas y BiomédicasAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2PLoS ONEhttps://doi.org/10.1371/journal.pone.0218116MicroRNAsSystemic lupus erythematosusDNA methylationPost-translational modificationEpigeneticsTranscription factorsGene regulationIntegrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosusarticlehttp://purl.org/coar/resource_type/c_6501Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell. Elsevier Inc.; 2016; 165: 551–565. https://doi.org/10.1016/j.cell.2016.03.008 PMID: 27040498Pacheco-Lugo L, Sáenz-García J, Navarro Quiroz E, González Torres H, Fang L, Díaz-Olmos Y, et al. Plasma cytokines as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. Lupus. SAGE PublicationsSage UK: London, England; 2019; 28: 34–43. https://doi.org/10.1177/ 0961203318812679 PMID: 30453818Weinhold B. Epigenetics: the science of change. Environ Health Perspect. National Institute of Environmental Health Science; 2006; 114: A160—7. Available: http://www.ncbi.nlm.nih.gov/pubmed/16507447 https://doi.org/10.1289/ehp.114-a160 PMID: 16507447Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. Nature Publishing Group; 2013; 38: 23–38. https://doi.org/10.1038/npp.2012.112 PMID: 22781841Long MD, Smiraglia DJ, Campbell MJ. The genomic impact of DNA CpG methylation on gene expression; relationships in prostate cancer [Internet]. Biomolecules. Multidisciplinary Digital Publishing Institute (MDPI); 2017. https://doi.org/10.3390/biom7010015 PMID: 28216563He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. Nature Publishing Group; 2004; 5: 522–531. https://doi.org/10.1038/nrg1379 PMID: 15211354Maison C, Bailly D, Peters AHFMFM, Quivy J-P, Roche D, Taddei A, et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet. Nature Publishing Group; 2002; 30: 329–334. https://doi.org/10.1038/ng843 PMID: 11850619Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol. Nature Publishing Group; 2004; 6: 784–791. https://doi.org/10.1038/ncb1155 PMID: 15247924Zhao S, Long H, Lu Q. Epigenetic perspectives in systemic lupus erythematosus: pathogenesis, biomarkers, and therapeutic potentials. Clin Rev Allergy Immunol. 2010; 39: 3–9. https://doi.org/10.1007/ s12016-009-8165-7 PMID: 19639427Zhao M, Liu S, Luo S, Wu H, Tang M, Cheng W, et al. DNA methylation and mRNA and microRNA expression of SLE CD4+ T cells correlate with disease phenotype. J Autoimmun. Academic Press; 2014; 54: 127–136. https://doi.org/10.1016/j.jaut.2014.07.002 PMID: 25091625Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol. American Association of Immunologists; 2010; 184: 6773–6781. https://doi.org/10.4049/ jimmunol.0904060 PMID: 20483747Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, et al. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2009; 37: D98–104. https://doi.org/ 10.1093/nar/gkn714 PMID: 18927107Ruepp A, Kowarsch A, Schmidl D, Bruggenthin F, Brauner B, Dunger I, et al. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. BioMed Central; 2010; 11: R6. https://doi.org/10.1186/gb-2010-11-1-r6 PMID: 20089154Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, et al. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. Oxford University Press; 2014; 42: D1070–4. https://doi.org/10.1093/nar/gkt1023 PMID: 24194601Navarro-Quiroz E, Pacheco-Lugo L, Navarro-Quiroz R, Lorenzi H, España-Puccini P, Díaz-Olmos Y, et al. Profiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis. PLoS One. 2017; 12. https://doi.org/10.1371/journal.pone.0187973 PMID: 29136041Navarro-Quiroz E, Pacheco-Lugo L, Lorenzi H, Díaz-Olmos Y, Almendrales L, Rico E, et al. Highthroughput sequencing reveals circulating miRNAs as potential biomarkers of kidney damage in patients with systemic lupus erythematosus. Zhou X, editor. PLoS One. Public Library of Science; 2016; 11: e0166202. https://doi.org/10.1371/journal.pone.0166202 PMID: 27835701Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. Oxford University Press; 2015; 43: W460–W466. https://doi.org/10.1093/nar/gkv403 PMID: 25977294Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. Oxford University Press; 2000; 28: 27–30. https://doi.org/10.1093/nar/28.1.27 PMID: 10592173Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. England; 2012; 40: W597–603. https://doi.org/10.1093/nar/ gks400 PMID: 22661580Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28: 304–305. Available: http:// www.ncbi.nlm.nih.gov/pubmed/10592255%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=PMC102465Wang J, Lu M, Qiu C, Cui Q. TransmiR: a transcription factor–microRNA regulation database. Nucleic Acids Res. Narnia; 2010; 38: D119—D122. https://doi.org/10.1093/nar/gkp803 PMID: 19786497Chien CH, Sun YM, Chang WC, Chiang-Hsieh PY, Lee TY, Tsai WC, et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res. 2011; 39: 9345–9356. https://doi.org/10.1093/nar/gkr604 PMID: 21821656Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. Cold Spring Harbor Laboratory Press; 2003; 13: 2498–504. https://doi.org/10.1101/gr.1239303 PMID: 14597658Wang S, Adrianto I, Wiley GB, Lessard CJ, Kelly JA, Adler AJ, et al. A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes Immun. NIH Public Access; 2012; 13: 380–387. https://doi.org/10.1038/gene.2012.6 PMID: 22476155Wertz IE, Dixit VM. Signaling to NF- B: Regulation by Ubiquitination. Cold Spring Harb Perspect Biol. 2010; 2: a003350–a003350. https://doi.org/10.1101/cshperspect.a003350 PMID: 20300215Orian A, Whiteside S, Israël A, Stancovski I, Schwartz AL, Ciechanover A. Ubiquitin-mediated processing of NF-kappa B transcriptional activator precursor p105. Reconstitution of a cell-free system and identification of the ubiquitin-carrier protein, E2, and a novel ubiquitin-protein ligase, E3, involved in conjugation. J Biol Chem. 1995; 270: 21707–21714. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 7665588 https://doi.org/10.1074/jbc.270.37.21707 PMID: 7665588Javierre BM, Hernando H, Ballestar E. Environmental triggers and epigenetic deregulation in autoimmune disease. Discov Med. 2011; 12: 535–545. Available: http://www.ncbi.nlm.nih.gov/pubmed/ 22204770 PMID: 22204770Abd-Elkareem MI, Al Tamimy HM, Khamis OA, Abdellatif SS, Hussein MRA. Increased urinary levels of the leukocyte adhesion molecules ICAM-1 and VCAM-1 in human lupus nephritis with advanced renal histological changes: preliminary findings. Clin Exp Nephrol. 2010; 14: 548–557. https://doi.org/10. 1007/s10157-010-0322-z PMID: 20714774Perl A. Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat Rev Rheumatol. 2013; 9: 674–686. https://doi.org/10.1038/nrrheum.2013.147 PMID: 24100461Coit P, Jeffries M, Altorok N, Dozmorov MG, Koelsch KA, Wren JD, et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naïve CD4+ T cells from lupus patients. J Autoimmun. 2013; 43: 78–84. https://doi.org/10.1016/j.jaut. 2013.04.003 PMID: 23623029Absher DM, Li X, Waite LL, Gibson A, Roberts K, Edberg J, et al. Genome-Wide DNA Methylation Analysis of Systemic Lupus Erythematosus Reveals Persistent Hypomethylation of Interferon Genes and Compositional Changes to CD4+ T-cell Populations. O’Shea J, editor. PLoS Genet. 2013; 9: e1003678. https://doi.org/10.1371/journal.pgen.1003678 PMID: 23950730Mazari L, Ouarzane M, Zouali M. Subversion of B lymphocyte tolerance by hydralazine, a potential mechanism for drug-induced lupus. Proc Natl Acad Sci U S A. National Academy of Sciences; 2007; 104: 6317–22. https://doi.org/10.1073/pnas.0610434104 PMID: 17404230Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta— Rev Cancer. 2007; 1775: 138–162. https://doi.org/10.1016/j.bbcan.2006.08.007 PMID: 17045745Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M, et al. Season of Conception in Rural Gambia Affects DNA Methylation at Putative Human Metastable Epialleles. Whitelaw E, editor. PLoS Genet. Public Library of Science; 2010; 6: e1001252. https://doi.org/10.1371/ journal.pgen.1001252 PMID: 21203497Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010; 20: 170–179. https://doi.org/10.1101/gr.100289.109 PMID: 20028698Vučković F, Krisˇtić J, Gudelj I, Teruel M, Keser T, Pezer M, et al. Association of Systemic Lupus Erythematosus With Decreased Immunosuppressive Potential of the IgG Glycome. Arthritis Rheumatol. 2015; 67: 2978–2989. https://doi.org/10.1002/art.39273 PMID: 26200652Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat Med. 2012; 18: 1401–1406. https://doi.org/10.1038/nm.2862 PMID: 22922409Zhu S, Pan W, Song X, Liu Y, Shao X, Tang Y, et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat Med. 2012; 18: 1077–1086. https://doi.org/10.1038/nm.2815 PMID: 22660635Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L, et al. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheum. 2010; 62: 3425–3435. https://doi.org/10.1002/art.27632 PMID: 20589685Te JL, Dozmorov IM, Guthridge JM, Nguyen KL, Cavett JW, Kelly JA, et al. Identification of Unique MicroRNA Signature Associated with Lupus Nephritis. Means T, editor. PLoS One. Public Library of Science; 2010; 5: e10344. https://doi.org/10.1371/journal.pone.0010344 PMID: 20485490Wang Z, Chang C, Peng M, Lu Q. Translating epigenetics into clinic: focus on lupus. Clin Epigenetics. BioMed Central; 2017; 9: 78. https://doi.org/10.1186/s13148-017-0378-7 PMID: 28785369Hu N, Qiu X, Luo Y, Yuan J, Li Y, Lei W, et al. Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol. The Journal of Rheumatology; 2008; 35: 804–810. Available: http://www.ncbi.nlm. nih.gov/pubmed/18398941 PMID: 18398941Rougeulle C, Chaumeil J, Sarma K, Allis CD, Reinberg D, Avner P, et al. Differential Histone H3 Lys-9 and Lys-27 Methylation Profiles on the X Chromosome. Mol Cell Biol. 2004; 24: 5475–5484. https://doi. org/10.1128/MCB.24.12.5475-5484.2004 PMID: 15169908Mohammadoo-Khorasani M, Musavi M, Mousavi M, Moossavi M, Khoddamian M, Sandoughi M, et al. Deoxyribonuclease I gene polymorphism and susceptibility to systemic lupus erythematosus. Clin Rheumatol. 2016; 35: 101–105. https://doi.org/10.1007/s10067-015-3111-y PMID: 26547219Chitrabamrung S, Rubin RL, Tan EM. Serum deoxyribonuclease I and clinical activity in systemic lupus erythematosus. Rheumatol Int. Springer-Verlag; 1981; 1: 55–60. https://doi.org/10.1007/BF00541153 PMID: 6287560Rice GI, Rodero MP, Crow YJ. Human Disease Phenotypes Associated With Mutations in TREX1. J Clin Immunol. 2015; 35: 235–243. https://doi.org/10.1007/s10875-015-0147-3 PMID: 25731743Sede BarranquillaMaestría en GenéticaORIGINALPDF.pdfPDF.pdfapplication/pdf2157201https://bonga.unisimon.edu.co/bitstreams/81943364-bf93-4068-bfb1-a07e3e2fb098/downloadc98bcd83be903ef6c16d3be1dc23645bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/e83cea20-0e91-4b90-8e94-cdf11dedc0df/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/9f05178f-3e7e-45bf-99b4-0fe34c72abeb/download3fdc7b41651299350522650338f5754dMD53TEXTIntegratedAnalysisofmicroRNA.pdf.txtIntegratedAnalysisofmicroRNA.pdf.txtExtracted texttext/plain42432https://bonga.unisimon.edu.co/bitstreams/5dff6d3d-ef9c-410e-9b05-45012286a6fc/downloade67aa3db58e139220776eb62cb6b423bMD54PDF.txtPDF.txtExtracted texttext/plain50253https://bonga.unisimon.edu.co/bitstreams/a92b5f24-7688-4a1c-a2a1-cfadc38433a5/download3e3ff1065f1ea144fceb07d047f3af1bMD56PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain50253https://bonga.unisimon.edu.co/bitstreams/e3326f15-9fa9-4a84-a1cb-fddfd4209256/download3e3ff1065f1ea144fceb07d047f3af1bMD58THUMBNAILIntegratedAnalysisofmicroRNA.pdf.jpgIntegratedAnalysisofmicroRNA.pdf.jpgGenerated Thumbnailimage/jpeg1728https://bonga.unisimon.edu.co/bitstreams/b1ab2300-5f42-47b7-8b37-5a7e4a27af16/download262bc25abc6640cff0ba3623f057b1f7MD55PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg5794https://bonga.unisimon.edu.co/bitstreams/0aa2b9e0-be93-4269-8870-323528aa1038/download4ae587b1eb46c85fc98b01b48b2e0dfbMD57PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5794https://bonga.unisimon.edu.co/bitstreams/f9a12675-4b56-411b-850a-5a7146f92ab3/download4ae587b1eb46c85fc98b01b48b2e0dfbMD5920.500.12442/3358oai:bonga.unisimon.edu.co:20.500.12442/33582024-08-14 21:51:42.969http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalrestrictedhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=