Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission

In a homeland security setting, the ability to detect explosives at a distance is a top security priority. Consequently, the development of remote, noncontact detection systems continues to represent a path forward. In this vein, a remote detection system for excitation of infrared emissions using a...

Full description

Autores:
Galán-Freyle, Nataly J.
Pacheco-Londoño, Leonardo C.
Figueroa-Navedo, Amanda M.
Ortiz-Rivera, William
Castro-Suarez, John R.
Hernández-Rivera, Samuel P.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/6140
Acceso en línea:
https://hdl.handle.net/20.500.12442/6140
http://dx.doi.org/10.1117/1.OE.59.9.092008
https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-59/issue-9/092008/Modulated-laser-source-induction-system-for-remote-detection-of-infrared/10.1117/1.OE.59.9.092008.short?SSO=1
Palabra clave:
Standoff detection
Laser-induced thermal emission
Highly energetic materials
Carbon dioxide laser
Midinfrared emission spectroscopy
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_1fcbba6b8fc11d9ca81ec99ebb6c9727
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/6140
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission
title Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission
spellingShingle Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission
Standoff detection
Laser-induced thermal emission
Highly energetic materials
Carbon dioxide laser
Midinfrared emission spectroscopy
title_short Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission
title_full Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission
title_fullStr Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission
title_full_unstemmed Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission
title_sort Modulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emission
dc.creator.fl_str_mv Galán-Freyle, Nataly J.
Pacheco-Londoño, Leonardo C.
Figueroa-Navedo, Amanda M.
Ortiz-Rivera, William
Castro-Suarez, John R.
Hernández-Rivera, Samuel P.
dc.contributor.author.none.fl_str_mv Galán-Freyle, Nataly J.
Pacheco-Londoño, Leonardo C.
Figueroa-Navedo, Amanda M.
Ortiz-Rivera, William
Castro-Suarez, John R.
Hernández-Rivera, Samuel P.
dc.subject.eng.fl_str_mv Standoff detection
Laser-induced thermal emission
Highly energetic materials
Carbon dioxide laser
topic Standoff detection
Laser-induced thermal emission
Highly energetic materials
Carbon dioxide laser
Midinfrared emission spectroscopy
dc.subject.spa.fl_str_mv Midinfrared emission spectroscopy
description In a homeland security setting, the ability to detect explosives at a distance is a top security priority. Consequently, the development of remote, noncontact detection systems continues to represent a path forward. In this vein, a remote detection system for excitation of infrared emissions using a CO2 laser for generating laser-induced thermal emission (LITE) is a possible solution. However, a LITE system using a CO2 laser has certain limitations, such as the requirement of careful alignment, interference by the CO2 signal during detection, and the power density loss due to the increase of the laser image at the sample plane with the detection distance. A remote chopped-laser induction system for LITE detection using a CO2 laser source coupled to a focusing telescope was built to solve some of these limitations. Samples of fixed surface concentration (500 μg∕cm2) of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) were used for the remote detection experiments at distances ranging between 4 and 8 m. This system was capable of thermally exciting and capturing the thermal emissions (TEs) at different times in a cyclic manner by a Fourier transform infrared (FTIR) spectrometer coupled to a gold-coated reflection optics telescope (FTIR-GT). This was done using a wheel blocking the capture of TE by the FTIR-GT chopper while heating the sample with the CO2 laser. As the wheel moved, it blocked the CO2 laser and allowed the spectroscopic system to capture the TEs of RDX. Different periods (or frequencies) of wheel spin and FTIR-GT integration times were evaluated to find dependence with observation distance of the maximum intensity detection, minimum signal-to-noise ratio, CO2 laser spot size increase, and the induced temperature increment
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-02T15:16:43Z
dc.date.available.none.fl_str_mv 2020-07-02T15:16:43Z
dc.date.issued.none.fl_str_mv 2020
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/6140
dc.identifier.doi.none.fl_str_mv http://dx.doi.org/10.1117/1.OE.59.9.092008
dc.identifier.url.none.fl_str_mv https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-59/issue-9/092008/Modulated-laser-source-induction-system-for-remote-detection-of-infrared/10.1117/1.OE.59.9.092008.short?SSO=1
url https://hdl.handle.net/20.500.12442/6140
http://dx.doi.org/10.1117/1.OE.59.9.092008
https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-59/issue-9/092008/Modulated-laser-source-induction-system-for-remote-detection-of-infrared/10.1117/1.OE.59.9.092008.short?SSO=1
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv Optical Engineering
dc.source.eng.fl_str_mv Society of Photo-optical Instrumentation Engineers (SPIE)
dc.source.none.fl_str_mv Vol. 59 N° 9 (2020)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/b616d07a-c41f-4601-b0f8-ebe7a4bd5fc2/download
https://bonga.unisimon.edu.co/bitstreams/d4a59112-b591-40e2-8221-5dbab121df50/download
https://bonga.unisimon.edu.co/bitstreams/140cdd4c-81db-4387-949d-cd44ed6c4c55/download
https://bonga.unisimon.edu.co/bitstreams/0573ac69-d1df-48f9-a04b-b1fe1c0cf2ac/download
https://bonga.unisimon.edu.co/bitstreams/de24cd0e-d3a7-4e48-b1cc-79b045c6a41d/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
2d060d92bcf35d3e32bc3747a700d8cb
76f9a9cc8eb300248e4a8cb0859ded3b
2d2c2199914f518df8acb352574f1f94
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100503903928320
spelling Galán-Freyle, Nataly J.cd16040f-2e16-4535-a75e-0b661dae889fPacheco-Londoño, Leonardo C.6b1ffce2-eacd-4bef-ac33-027cc8b3ddb2Figueroa-Navedo, Amanda M.17301205-504f-4972-a140-391d7bc407ebOrtiz-Rivera, William5d81bfca-4b03-4622-b9be-0e9aa2405335Castro-Suarez, John R.2730016a-905b-448f-bfdc-5dceeb030b30Hernández-Rivera, Samuel P.fab014c2-13e0-4f18-91a9-d7b676a8726e2020-07-02T15:16:43Z2020-07-02T15:16:43Z2020https://hdl.handle.net/20.500.12442/6140http://dx.doi.org/10.1117/1.OE.59.9.092008https://www.spiedigitallibrary.org/journals/Optical-Engineering/volume-59/issue-9/092008/Modulated-laser-source-induction-system-for-remote-detection-of-infrared/10.1117/1.OE.59.9.092008.short?SSO=1In a homeland security setting, the ability to detect explosives at a distance is a top security priority. Consequently, the development of remote, noncontact detection systems continues to represent a path forward. In this vein, a remote detection system for excitation of infrared emissions using a CO2 laser for generating laser-induced thermal emission (LITE) is a possible solution. However, a LITE system using a CO2 laser has certain limitations, such as the requirement of careful alignment, interference by the CO2 signal during detection, and the power density loss due to the increase of the laser image at the sample plane with the detection distance. A remote chopped-laser induction system for LITE detection using a CO2 laser source coupled to a focusing telescope was built to solve some of these limitations. Samples of fixed surface concentration (500 μg∕cm2) of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) were used for the remote detection experiments at distances ranging between 4 and 8 m. This system was capable of thermally exciting and capturing the thermal emissions (TEs) at different times in a cyclic manner by a Fourier transform infrared (FTIR) spectrometer coupled to a gold-coated reflection optics telescope (FTIR-GT). This was done using a wheel blocking the capture of TE by the FTIR-GT chopper while heating the sample with the CO2 laser. As the wheel moved, it blocked the CO2 laser and allowed the spectroscopic system to capture the TEs of RDX. Different periods (or frequencies) of wheel spin and FTIR-GT integration times were evaluated to find dependence with observation distance of the maximum intensity detection, minimum signal-to-noise ratio, CO2 laser spot size increase, and the induced temperature incrementpdfengOptical EngineeringAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Society of Photo-optical Instrumentation Engineers (SPIE)Vol. 59 N° 9 (2020)Standoff detectionLaser-induced thermal emissionHighly energetic materialsCarbon dioxide laserMidinfrared emission spectroscopyModulated-laser source induction system for remote detection of infrared emissions of high explosives using laser-induced thermal emissioninfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_71e4c1898caa6e32http://purl.org/coar/resource_type/c_2df8fbb1N. J. Galán-Freyle et al., “Standoff detection of highly energetic materials using laserinduced thermal excitation of infrared emission,” Appl. Spectrosc. 69(5), 535–544 (2015).L. T. Lin, D. D. Archibald, and D. E. Honigs, “Preliminary Studies of laser-induced thermal emission spectroscopy of condensed phases,” Appl. Spectrosc. 42(3), 477–483 (1988).M. J. Wilhelm et al., “The lowest quartet-state of the ketenyl (HCCO) radical: collisioninduced intersystem crossing and the v2 vibrational mode,” Chem. Phys. 422, 290–296 (2013).M. J. Wilhelm et al., “Photodissociation of vinyl cyanide at 193 nm: nascent product distributions of the molecular elimination channels,” J. Chem. Phys 130(4), 044307 (2009).L. T. Letendre et al., “Time-resolved FTIR emission spectroscopy of transient radicals,” J. Chin. Chem. 52(4), 677–686 (2005).L. T. Letendre et al., “Interfacing a transient digitizer to a step-scan Fourier transform spectrometer for nanosecond time resolved spectroscopy,” Rev. Sci. Instrum. 70(1), 18–22 (1999).V. Karpovych et al., “Laser-induced thermal emission of rough carbon surfaces,” J. Laser Appl. 32(1), 012010 (2020).S. Wallin et al., “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem 395(2), 259–274 (2009).C.W. Van Neste, L. R. Senesac, and T. Thundat, “Standoff spectroscopy of surface adsorbed chemicals,” Anal. Chem. 81(5), 1952–1956 (2009).L. Pacheco-Londoño et al., “Vibrational spectroscopy standoff detection of explosives,” Anal. Bioanal. Chem. 395(2), 323–335 (2009).J. R. Castro-Suarez et al., “FT-IR standoff detection of thermally excited emissions of trinitrotoluene (TNT) deposited on aluminum substrates,” Appl. Spectrosc. 67(2), 181–186 (2013).A. Mukherjee, S. Von der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49(11), 2072–2078 (2010).J. C. Carter et al., “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59(6), 769–775 (2005).J. L. Gottfried et al., “Standoff detection of chemical and biological threats using laserinduced breakdown spectroscopy,” Appl. Spectrosc. 62(4), 353–363 (2008).A. K. Misra et al., “Single-pulse standoff Raman detection of chemicals from 120 m distance during daytime,” Appl. Spectrosc. 66(11), 1279–1285 (2012).J. E. Parmeter, “The challenge of standoff explosives detection,” in 38th Annu. 2004 Int. Carnahan Conf. Secur. Technol., pp. 55–358 (2004).B. E. Bernacki and M. C. Phillips, “Standoff hyperspectral imaging of explosives residues using broadly tunable external cavity quantum cascade laser illumination,” Proc. SPIE 7665, 76650I (2010).W. Ortiz-Rivera et al., “Vibrational spectroscopy standoff detection of threat chemicals,” Proc. SPIE 8031, 803129 (2011).A. Pettersson et al., “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K (2010).A. Pettersson et al., “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34(4), 297–306 (2009).A. R. Ford et al., “Explosives sensing using multiple optical techniques in a standoff regime with a common platform,” Spectroscopy Online, April (2011).N. J. Galán-Freyle et al., “Artificial intelligence assisted mid-infrared laser spectroscopy in situ detection of petroleum in soils,” Appl. Sci. 10(4), 1319 (2020).G. L. McEneff et al., “Sorbent film-coated passive samplers for explosives vapour detection part b: deployment in semi-operational environments and alternative applications,” Sci. Rep. 8(1), 5816 (2018).W. Zhang et al., “Recent developments in spectroscopic techniques for the detection of explosives,” Materials 11(8), 1364 (2018).F. Jin et al., “Chemical and explosive detection with long-wave infrared laser induced breakdown spectroscopy,” Proc. SPIE 9824, 98240Q (2016).R. J. Pell et al., “Quantitative infrared emission spectroscopy using multivariate calibration,” Anal. Chem. 60(24), 2824–2827 (1988).M. Friedrich and D. R. T. Zahn, “Emission spectroscopy: an excellent tool for the infrared characterization of textile fibers,” Appl. Spectrosc. 52(12), 1530–1535 (1998).M. J. Zuerlein et al., “Modeling thermal emission in dental enamel induced by 9–11 μm laser light,” Appl. Surf. Sci. 127–129, 863–868 (1998).R.W. Jones et al., “Chemical analysis of wood chips in motion using thermal-emission midinfrared spectroscopy with projection to latent structures regression,” Anal. Chem. 74(2), 453–457 (2001).T. M. Niemczyk, S. Zhang, and D. M. Haaland, “Monitoring dielectric thin-film production on product wafers using infrared emission spectroscopy,” Appl. Spectrosc. 55(8), 1053– 1059 (2001).R. Furstenberg et al., “Stand-off detection of trace explosives via resonant infrared photothermal imaging,” Appl. Phys. Lett. 93(22), 224103 (2008).N. Y. Galán-Freyle et al., “Standoff laser-induced thermal emission of explosives,” Proc. SPIE 8705, 870508 (2013).A. Figueroa-Navedo et al., “Improved detection of highly energetic materials traces on surfaces by standoff laser-induced thermal emission incorporating neural networks,” Proc. SPIE 8705, 87050D (2013).A. M. Figueroa-Navedo et al., “Chemometrics-enhanced laser-induced thermal emission detection of PETN and other explosives on various substrates,” J. Chemom. 29(6), 329– 337 (2015).F. B. Gonzaga and C. Pasquini, “Near-infrared emission spectrometry based on an acoustooptical tunable filter,” Anal. Chem. 77(4), 1046–1054 (2005).A. Tsuge, Y. Uwamino, and T. Ishizuka, “Applications of laser-induced thermal emission spectroscopy to various samples,” Appl. Spectrosc. 43(7), 1145–1149 (1989).O. Primera-Pedrozo et al., “High explosives mixtures detection using fiber optics coupled: grazing angle probe/Fourier transform reflection absorption infrared spectroscopy,” Sens. Imaging 9(3-4), 27–40 (2008).M. Wrable-Rose et al., “Preparation of TNT, RDX and ammonium nitrate standards on gold-on-silicon surfaces by thermal inkjet technology,” Sens. Imaging 11(4), 147–169 (2010).R. Infante-Castillo, L. C. Pacheco-Londoño, and S. P. Hernández-Rivera, “Monitoring the α→β solid-solid phase transition of RDX with Raman spectroscopy: a theoretical and experimental study,” J. Mol. Struct. 970(1–3), 51–58 (2010).R. Infante-Castillo, L. Pacheco-Londoño, and S. P. Hernández-Rivera, “Vibrational spectra and structure of RDX and its 13C- and 15N-labeled derivatives: a theoretical and experimental study,” Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 76(2), 137–141 (2010).CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/b616d07a-c41f-4601-b0f8-ebe7a4bd5fc2/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/d4a59112-b591-40e2-8221-5dbab121df50/download733bec43a0bf5ade4d97db708e29b185MD53ORIGINALModulated_laser_source_induction_system_remote_detection_Preprint.pdfModulated_laser_source_induction_system_remote_detection_Preprint.pdfPDFapplication/pdf2683125https://bonga.unisimon.edu.co/bitstreams/140cdd4c-81db-4387-949d-cd44ed6c4c55/download2d060d92bcf35d3e32bc3747a700d8cbMD54TEXTModulated_laser_source_induction_system_remote_detection_Preprint.pdf.txtModulated_laser_source_induction_system_remote_detection_Preprint.pdf.txtExtracted texttext/plain35621https://bonga.unisimon.edu.co/bitstreams/0573ac69-d1df-48f9-a04b-b1fe1c0cf2ac/download76f9a9cc8eb300248e4a8cb0859ded3bMD55THUMBNAILModulated_laser_source_induction_system_remote_detection_Preprint.pdf.jpgModulated_laser_source_induction_system_remote_detection_Preprint.pdf.jpgGenerated Thumbnailimage/jpeg1732https://bonga.unisimon.edu.co/bitstreams/de24cd0e-d3a7-4e48-b1cc-79b045c6a41d/download2d2c2199914f518df8acb352574f1f94MD5620.500.12442/6140oai:bonga.unisimon.edu.co:20.500.12442/61402024-08-14 21:53:39.604http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u