Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease

Background: The identification of novel genetic variants contributing to the widespread in the age of onset (AOO) of Alzheimer’s disease (AD) could aid in the prognosis and/or development of new therapeutic strategies focused on early interventions. Methods: We recruited 78 individuals with AD from...

Full description

Autores:
Vélez, Jorge I.
Lopera, Francisco
Creagh, Penelope K.
Piñeros, Laura B.
Das, Debjani
Cervantes-Henríquez, Martha L.
Acosta-López, Johan E.
Isaza – Ruget, Mario A.
Espinosa, Lady G.
Easteal, Simon
Quintero, Gustavo A.
Tamar Silva, Claudia
Mastronardi, Claudio A.
Arcos-Burgos, Mauricio
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2272
Acceso en línea:
http://hdl.handle.net/20.500.12442/2272
Palabra clave:
Alzheimer's disease
APOE*E2
Age of Onset
ASTN2
Genetic Isolate
PSEN1
Extreme phenotypes
SNTG1
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_1bfdf829553cc39b0890a9e816879357
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/2272
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease
title Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease
spellingShingle Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease
Alzheimer's disease
APOE*E2
Age of Onset
ASTN2
Genetic Isolate
PSEN1
Extreme phenotypes
SNTG1
title_short Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease
title_full Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease
title_fullStr Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease
title_full_unstemmed Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease
title_sort Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease
dc.creator.fl_str_mv Vélez, Jorge I.
Lopera, Francisco
Creagh, Penelope K.
Piñeros, Laura B.
Das, Debjani
Cervantes-Henríquez, Martha L.
Acosta-López, Johan E.
Isaza – Ruget, Mario A.
Espinosa, Lady G.
Easteal, Simon
Quintero, Gustavo A.
Tamar Silva, Claudia
Mastronardi, Claudio A.
Arcos-Burgos, Mauricio
dc.contributor.author.none.fl_str_mv Vélez, Jorge I.
Lopera, Francisco
Creagh, Penelope K.
Piñeros, Laura B.
Das, Debjani
Cervantes-Henríquez, Martha L.
Acosta-López, Johan E.
Isaza – Ruget, Mario A.
Espinosa, Lady G.
Easteal, Simon
Quintero, Gustavo A.
Tamar Silva, Claudia
Mastronardi, Claudio A.
Arcos-Burgos, Mauricio
dc.subject.eng.fl_str_mv Alzheimer's disease
APOE*E2
Age of Onset
ASTN2
Genetic Isolate
PSEN1
Extreme phenotypes
SNTG1
topic Alzheimer's disease
APOE*E2
Age of Onset
ASTN2
Genetic Isolate
PSEN1
Extreme phenotypes
SNTG1
description Background: The identification of novel genetic variants contributing to the widespread in the age of onset (AOO) of Alzheimer’s disease (AD) could aid in the prognosis and/or development of new therapeutic strategies focused on early interventions. Methods: We recruited 78 individuals with AD from the Paisa genetic isolate in Antioquia, Colombia. These individuals belong to the world largest multigenerational and extended pedigree segregating AD as a consequence of a dominant fully penetrant mutation in the PSEN1 gene and exhibit an AOO ranging from the early 30s to the late 70s. To shed light on the genetic underpinning that could explain the large spread of the age of onset (AOO) of AD, 64 single nucleotide polymorphisms (SNP) associated with neuroanatomical, cardiovascular and cognitive measures in AD were genotyped. Standard quality control and filtering procedures were applied, and single- and multi-locus linear mixed-effects models were used to identify AOO associated SNPs. A full two-locus interaction model was fitted to define how identified SNPs interact to modulate AOO. Results: We identified two key epistatic interactions between the APOE*E2 allele and SNPs ASTN2-rs7852878 and SNTG1-rs16914781 that delay AOO by up to ~8 years (95%CI: 3.2-12.7, P=1.83x10-3) and ~7.6 years (95%CI: 3.3-11.8, P = 8.69x10-4), respectively, and validated our previous finding indicating that APOE*E2 delays AOO of AD in PSEN1 E280 mutation carriers. Discussion: This new evidence involving APOE*E2 as an AOO delayer could be used for developing precision medicine approaches and predictive genomics models to potentially determine AOO in individuals genetically predisposed to AD.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-09-06T13:59:18Z
dc.date.available.none.fl_str_mv 2018-09-06T13:59:18Z
dc.date.issued.none.fl_str_mv 2018-08
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 591182
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/2272
identifier_str_mv 591182
url http://hdl.handle.net/20.500.12442/2272
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv SpringerLink
dc.source.eng.fl_str_mv Molecular Neurobiology
Vol. 55, No.12035 (2018)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/9abb7b6e-898c-47e2-af46-5438589203f9/download
https://bonga.unisimon.edu.co/bitstreams/f71d3563-8912-4ec7-84cf-a9f55ec5c29c/download
https://bonga.unisimon.edu.co/bitstreams/432f6242-5d7c-4e5c-84e9-cfed0af8d347/download
https://bonga.unisimon.edu.co/bitstreams/ca564a4a-3b6c-45cb-aa0e-2faaf88e9cf4/download
https://bonga.unisimon.edu.co/bitstreams/7863194e-42b7-4a53-9e85-b3bb4801bc31/download
https://bonga.unisimon.edu.co/bitstreams/e70c1faa-7e9f-4860-923d-4292e6d7017a/download
bitstream.checksum.fl_str_mv 5c589b939a3d9acbb15f54f3eb0a5751
3fdc7b41651299350522650338f5754d
9602621f594249954d4cd5af67e2f802
bca5ae67d16b5257e58a34c6cb353272
2e48ae25359ffe6dcca2a782739572b1
1c7af3778d16fe640e026a751088bbae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100500116471808
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Vélez, Jorge I.83044e45-79cc-4eec-a9cc-72bf4514e76b-1Lopera, Francisco4a86ad59-fb7c-4ff9-8b91-2eec6406d886-1Creagh, Penelope K.71be7878-379b-4c35-bbd0-c4fbfa7cdde8-1Piñeros, Laura B.d2daa79f-ac46-4fe4-824d-3cd4dc70bbf2-1Das, Debjani183c6cd5-41ca-42ef-906b-007f0a982667-1Cervantes-Henríquez, Martha L.fb444be3-6d82-40aa-8a3c-75f422f8ec66-1Acosta-López, Johan E.b7a16ff4-ce8a-419c-a6ba-597013d207ed-1Isaza – Ruget, Mario A.77aaf152-7637-4361-a85e-f73dabaa0ff6-1Espinosa, Lady G.a6329e9c-3fbf-4476-a358-24bd9bb599d7-1Easteal, Simon8b0a5f8e-583d-4bc3-91d3-012b7ae80811-1Quintero, Gustavo A.a18f84ac-9fdd-4382-86f7-071e354b1b2e-1Tamar Silva, Claudia6c125055-e645-441c-a419-ec00b19745c4-1Mastronardi, Claudio A.55aa2248-59ef-49ea-9101-21682e3932a0-1Arcos-Burgos, Mauriciob0eeb625-a6f6-4508-8925-309b5f765a14-12018-09-06T13:59:18Z2018-09-06T13:59:18Z2018-08591182http://hdl.handle.net/20.500.12442/2272Background: The identification of novel genetic variants contributing to the widespread in the age of onset (AOO) of Alzheimer’s disease (AD) could aid in the prognosis and/or development of new therapeutic strategies focused on early interventions. Methods: We recruited 78 individuals with AD from the Paisa genetic isolate in Antioquia, Colombia. These individuals belong to the world largest multigenerational and extended pedigree segregating AD as a consequence of a dominant fully penetrant mutation in the PSEN1 gene and exhibit an AOO ranging from the early 30s to the late 70s. To shed light on the genetic underpinning that could explain the large spread of the age of onset (AOO) of AD, 64 single nucleotide polymorphisms (SNP) associated with neuroanatomical, cardiovascular and cognitive measures in AD were genotyped. Standard quality control and filtering procedures were applied, and single- and multi-locus linear mixed-effects models were used to identify AOO associated SNPs. A full two-locus interaction model was fitted to define how identified SNPs interact to modulate AOO. Results: We identified two key epistatic interactions between the APOE*E2 allele and SNPs ASTN2-rs7852878 and SNTG1-rs16914781 that delay AOO by up to ~8 years (95%CI: 3.2-12.7, P=1.83x10-3) and ~7.6 years (95%CI: 3.3-11.8, P = 8.69x10-4), respectively, and validated our previous finding indicating that APOE*E2 delays AOO of AD in PSEN1 E280 mutation carriers. Discussion: This new evidence involving APOE*E2 as an AOO delayer could be used for developing precision medicine approaches and predictive genomics models to potentially determine AOO in individuals genetically predisposed to AD.engSpringerLinkMolecular NeurobiologyVol. 55, No.12035 (2018)Alzheimer's diseaseAPOE*E2Age of OnsetASTN2Genetic IsolatePSEN1Extreme phenotypesSNTG1Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Diseasearticlehttp://purl.org/coar/resource_type/c_6501Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimer's & Dementia. 2007;3(3):186-91.Arcos-Burgos M, Muenke M. Genetics of population isolates. Clinical Genetics. 2002;61(4):233-47.Acosta-Baena N, Sepulveda-Falla D, Lopera-Gomez CM, Jaramillo-Elorza MC, Moreno S, Aguirre-Acevedo DC, et al. Pre-dementia clinical stages in presenilin 1 E280A familial early-onset Alzheimer's disease: a retrospective cohort study. Lancet Neurol. 2011;10(3):213-20.Lopera F, Ardilla A, Martinez A, Madrigal L, Arango-Viana JC, Lemere CA, et al. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. Jama. 1997;277(10):793-9.Bravo ML, Valenzuela CY, Arcos-Burgos OM. Polymorphisms and phyletic relationships of the Paisa community from Antioquia (Colombia). Gene Geogr. 1996;10(1):11-7.Londono AC, Castellanos FX, Arbelaez A, Ruiz A, Aguirre-Acevedo DC, Richardson AM, et al. An 1H-MRS framework predicts the onset of Alzheimer's disease symptoms in PSEN1 mutation carriers. Alzheimers Dement. 2014;10(5):552-61.Velez JI, Chandrasekharappa SC, Henao E, Martinez AF, Harper U, Jones M, et al. Pooling/bootstrap-based GWAS (pbGWAS) identifies new loci modifying the age of onset in PSEN1 p.Glu280Ala Alzheimer's disease. Mol Psychiatry. 2013;18(5):568-75.Velez JI, Lopera F, Sepulveda-Falla D, Patel HR, Johar AS, Chuah A, et al. APOE*E2 allele delays age of onset in PSEN1 E280A Alzheimer's disease. Molecular psychiatry. 2016;21(7):916-24.Velez JI, Rivera D, Mastronardi CA, Patel HR, Tobon C, Villegas A, et al. A Mutation in DAOA Modifies the Age of Onset in PSEN1 E280A Alzheimer's Disease. Neural Plast. 2016;2016:9760314.Velez JI, Lopera F, Patel HR, Johar AS, Cai Y, Rivera D, et al. Mutations modifying sporadic Alzheimer's disease age of onset. Am J Med Genet B Neuropsychiatr Genet. 2016;171(8):1116-30.Lee JH, Cheng R, Vardarajan BN, Lantigua RA, Reyes-Dumeyer D, Ortmann W, et al. SORBS2, SH3RF3, AND NPHP1 MODIFY AGE AT ONSET IN CARRIERS OF THE G206A MUTATION IN PSEN1 WITH FAMILIAL ALZHEIMER'S DISEASE. Alzheimer's & Dementia. 2014;10(4):P632.Lee JH, Cheng R, Vardarajan B, Lantigua R, Reyes-Dumeyer D, Ortmann W, et al. Genetic Modifiers of Age at Onset in Carriers of the G206A Mutation in PSEN1 With Familial Alzheimer Disease Among Caribbean Hispanics. JAMA Neurol. 2015;72(9):1043-51.Chabris CF, Hebert BM, Benjamin DJ, Beauchamp J, Cesarini D, van der Loos M, et al. Most reported genetic associations with general intelligence are probably false positives. Psychol Sci. 2012;23(11):1314-23.Davies G, Tenesa A, Payton A, Yang J, Harris SE, Liewald D, et al. Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry. 2011;16(10):996-1005.Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, et al. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology. 1989;39(9):1159-65.Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gomez MG, Langois CM, et al. Florbetapir PET analysis of amyloid-beta deposition in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional study. Lancet Neurol. 2012;11(12):1057-65.Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez-Pardo C, Jimenez-Del-Rio M, et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer's disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol. 2012;11(12):1048-56.Reiman EM, Langbaum JB, Fleisher AS, Caselli RJ, Chen K, Ayutyanont N, et al. Alzheimer's Prevention Initiative: a plan to accelerate the evaluation of presymptomatic treatments. J Alzheimers Dis. 2011;26 Suppl 3:321-9.Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303-8.Association AP. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. Fourth ed. Association AP, editor. Washington, D.C.2000.Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS. A genome-wide scalable SNP genotyping assay using microarray technology. Nature genetics. 2005;37(5):549-54.Bansal V, Libiger O, Torkamani A, Schork NJ. Statistical analysis strategies for association studies involving rare variants. Nature reviews Genetics. 2010;11(11):773-85.Liu DJ, Leal SM. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions. PLoS genetics. 2010;6(10):e1001156.Liu DJ, Leal SM. Replication strategies for rare variant complex trait association studies via next-generation sequencing. American journal of human genetics. 2010;87(6):790-801.Segura V, Vilhjalmsson BJ, Platt A, Korte A, Seren U, Long Q, et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nature genetics. 2012;44(7):825-30.Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289-300.Vélez JI, Correa JC, Arcos-Burgos M. A new method for detecting significant p-values with applications to genetic data. Revista Colombiana de Estadistica. 2014;37(1):67-76.Acosta MT, Velez JI, Bustamante ML, Balog JZ, Arcos-Burgos M, Muenke M. A two-locus genetic interaction between LPHN3 and 11q predicts ADHD severity and long-term outcome. Transl Psychiatry. 2011;1:e17.Cordell HJ. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet. 2002;11(20):2463-8.Cordell HJ, Todd JA, Hill NJ, Lord CJ, Lyons PA, Peterson LB, et al. Statistical modeling of interlocus interactions in a complex disease: rejection of the multiplicative model of epistasis in type 1 diabetes. Genetics. 2001;158(1):357-67.Efron B. Bootstrap Methods: Another Look at the Jacknife. The Annals of Statistics. 1979;7(1):1-26.Efron B, Tibshirani R. Bootstrap Methods for Standard Errors, Confidence Intervals and Other Measures of Statistical Accuracy. Statistical Science. 1986;1(1):54-77.Lendon CL, Martinez A, Behrens IM, Kosik KS, Madrigal L, Norton J, et al. E280A PS-1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles. Human mutation. 1997;10(3):186-95.Pastor P, Roe CM, Villegas A, Bedoya G, Chakraverty S, Garcia G, et al. Apolipoprotein Eepsilon4 modifies Alzheimer's disease onset in an E280A PS1 kindred. Annals of neurology. 2003;54(2):163-9.Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC, Jr., et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature genetics. 1994;7(2):180-4.Berlau DJ, Corrada MM, Head E, Kawas CH. APOE epsilon2 is associated with intact cognition but increased Alzheimer pathology in the oldest old. Neurology. 2009;72(9):829-34.Verdile G, Fuller S, Atwood CS, Laws SM, Gandy SE, Martins RN. The role of beta amyloid in Alzheimer's disease: still a cause of everything or the only one who got caught? Pharmacol Res. 2004;50(4):397-409.Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer’s disease. Science Translational Medicine. 2016;8(338):338ra66.Lee HG, Casadesus G, Zhu X, Takeda A, Perry G, Smith MA. Challenging the amyloid cascade hypothesis: senile plaques and amyloid-beta as protective adaptations to Alzheimer disease. Annals of the New York Academy of Sciences. 2004;1019:1-4.Fjell AM, McEvoy L, Holland D, Dale AM, Walhovd KB, Alzheimer's Disease Neuroimaging I. What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Prog Neurobiol. 2014;117:20-40.Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and Biomarker Changes in Dominantly Inherited Alzheimer's Disease. New England Journal of Medicine. 2012;367(9):795-804.Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, Gomez MG, Langois CM, et al. Florbetapir PET analysis of amyloid-beta deposition in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional study. The Lancet Neurology. 2012;11(12):1057-65.Guerreiro RJ, Gustafson DR, Hardy J. The genetic architecture of Alzheimer's disease: beyond APP, PSENs and APOE. Neurobiol Aging. 2012;33(3):437-56.Sun X, Chen WD, Wang YD. beta-Amyloid: the key peptide in the pathogenesis of Alzheimer's disease. Front Pharmacol. 2015;6:221.Lemere CA, Lopera F, Kosik KS, Lendon CL, Ossa J, Saido TC, et al. The E280A presenilin 1 Alzheimer mutation produces increased A beta 42 deposition and severe cerebellar pathology. Nat Med. 1996;2(10):1146-50.Selkoe DJ. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behavioural brain research. 2008;192(1):106-13.Crouse NR, Ajit D, Udan ML, Nichols MR. Oligomeric amyloid-beta(1-42) induces THP-1 human monocyte adhesion and maturation. Brain research. 2009;1254:109-19.Dinamarca MC, Rios JA, Inestrosa NC. Postsynaptic Receptors for Amyloid-beta Oligomers as Mediators of Neuronal Damage in Alzheimer's Disease. Frontiers in physiology. 2012;3:464.Walker D, Lue LF, Paul G, Patel A, Sabbagh MN. Receptor for advanced glycation endproduct modulators: a new therapeutic target in Alzheimer's disease. Expert opinion on investigational drugs. 2015;24(3):393-9.Noble W, Hanger DP, Miller CC, Lovestone S. The importance of tau phosphorylation for neurodegenerative diseases. Frontiers in neurology. 2013;4:83.Zempel H, Thies E, Mandelkow E, Mandelkow EM. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2010;30(36):11938-50.Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505-8.Amar F, Sherman MA, Rush T, Larson M, Boyle G, Chang L, et al. Amyloid-β oligomer Aβ*56 induces specific alterations of tau phosphorylation and neuronal signaling. Science signaling. 2017;10(478):eaal2021.Suri S, Heise V, Trachtenberg AJ, Mackay CE. The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE varepsilon2. Neurosci Biobehav Rev. 2013;37(10 Pt 2):2878-86.Chalmers K, Wilcock GK, Love S. APOE epsilon 4 influences the pathological phenotype of Alzheimer's disease by favouring cerebrovascular over parenchymal accumulation of A beta protein. Neuropathol Appl Neurobiol. 2003;29(3):231-8.Kanekiyo T, Xu H, Bu G. ApoE and Abeta in Alzheimer's disease: accidental encounters or partners? Neuron. 2014;81(4):740-54.Lukk M, Kapushesky M, Nikkila J, Parkinson H, Goncalves A, Huber W, et al. A global map of human gene expression. Nat Biotechnol. 2010;28(4):322-4.Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, Ozeki Y, et al. A schizophreniaassociated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol. 2005;7(12):1167-78.Arcos-Burgos M, Jain M, Acosta MT, Shively S, Stanescu H, Wallis D, et al. A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry. 2010;15(11):1053-66.O'Sullivan ML, de Wit J, Savas JN, Comoletti D, Otto-Hitt S, Yates JR, 3rd, et al. FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron. 2012;73(5):903-10.Toma C, Torrico B, Hervas A, Valdes-Mas R, Tristan-Noguero A, Padillo V, et al. Exome sequencing in multiplex autism families suggests a major role for heterozygous truncating mutations. Mol Psychiatry. 2014;19(7):784-90.Lee BH, Kim YK. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig. 2010;7(4):231-5.Bis JC, DeCarli C, Smith AV, van der Lijn F, Crivello F, Fornage M, et al. Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nature genetics. 2012;44(5):545-51.Hibar DP, Adams HHH, Jahanshad N, Chauhan G, Stein JL, Hofer E, et al. Novel genetic loci associated with hippocampal volume. Nat Commun. 2017;8:13624.Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E, Genetic R, Outcome in Psychosis C, et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. American journal of human genetics. 2008;83(4):504-10.Wang KS, Liu XF, Aragam N. A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophr Res. 2010;124(1-3):192-9.Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT, et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm (Vienna). 2008;115(11):1573-85.Wang KS, Tonarelli S, Luo X, Wang L, Su B, Zuo L, et al. Polymorphisms within ASTN2 gene are associated with age at onset of Alzheimer's disease. J Neural Transm (Vienna). 2015;122(5):701-8.Hafner A, Obermajer N, Kos J. gamma-1-syntrophin mediates trafficking of gamma-enolase towards the plasma membrane and enhances its neurotrophic activity. Neurosignals. 2010;18(4):246- 58.Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV, Kane JM, et al. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci U S A. 2007;104(50):19942-7.Chen BJ, Mills JD, Takenaka K, Bliim N, Halliday GM, Janitz M. Characterization of circular RNAs landscape in multiple system atrophy brain. J Neurochem. 2016;139(3):485-96.Rusina R, Bourdain F, Matej R. [Multiple system atrophy and Alzheimer's disease: a case report of a rare association of two neuro-degenerative disorders]. Rev Neurol (Paris). 2007;163(12):1239-41.Chen H, Cade BE, Gleason KJ, Bjonnes AC, Stilp AM, Sofer T, et al. Multiethnic Meta- Analysis Identifies RAI1 as a Possible Obstructive Sleep Apnea-related Quantitative Trait Locus in Men. American journal of respiratory cell and molecular biology. 2018;58(3):391-401.Emamian F, Khazaie H, Tahmasian M, Leschziner GD, Morrell MJ, Hsiung GY, et al. The Association Between Obstructive Sleep Apnea and Alzheimer's Disease: A Meta-Analysis Perspective. Frontiers in aging neuroscience. 2016;8:78.Benaglia T, Chauveau D, Hunter DR, Young D. mixtools: An R Package for Analyzing Finite Mixture Models. Journal of Statistical Software. 2009;32(6):1-29.R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf447479https://bonga.unisimon.edu.co/bitstreams/9abb7b6e-898c-47e2-af46-5438589203f9/download5c589b939a3d9acbb15f54f3eb0a5751MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/f71d3563-8912-4ec7-84cf-a9f55ec5c29c/download3fdc7b41651299350522650338f5754dMD52TEXTvelez_et_al_MainText_20180720.final.pdf.txtvelez_et_al_MainText_20180720.final.pdf.txtExtracted texttext/plain49215https://bonga.unisimon.edu.co/bitstreams/432f6242-5d7c-4e5c-84e9-cfed0af8d347/download9602621f594249954d4cd5af67e2f802MD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain49851https://bonga.unisimon.edu.co/bitstreams/ca564a4a-3b6c-45cb-aa0e-2faaf88e9cf4/downloadbca5ae67d16b5257e58a34c6cb353272MD55THUMBNAILvelez_et_al_MainText_20180720.final.pdf.jpgvelez_et_al_MainText_20180720.final.pdf.jpgGenerated Thumbnailimage/jpeg1651https://bonga.unisimon.edu.co/bitstreams/7863194e-42b7-4a53-9e85-b3bb4801bc31/download2e48ae25359ffe6dcca2a782739572b1MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5009https://bonga.unisimon.edu.co/bitstreams/e70c1faa-7e9f-4860-923d-4292e6d7017a/download1c7af3778d16fe640e026a751088bbaeMD5620.500.12442/2272oai:bonga.unisimon.edu.co:20.500.12442/22722024-07-26 03:08:25.727open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=