Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]

Background: The multi–slice computerized tomography (MSCT) is a medical imaging modality that has been used to determine the size and location of the stomach cancer. Additionally, MSCT is considered the best modality for the staging of gastric cancer. One way to assess the type 2 cancer of stomach i...

Full description

Autores:
Chacón, Gerardo
Rodríguez, Johel E.
Bermúdez, Valmore
Vera, Miguel
Hernández, Juan Diego
Vargas, Sandra
Pardo, Aldo
Lameda, Carlos
Madriz, Delia
Bravo, Antonio J.
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2350
Acceso en línea:
http://hdl.handle.net/20.500.12442/2350
Palabra clave:
Stomach tumor
Type 2 cancer
Medical imaging
Multi–slice computerized tomography
Image enhancement
Region growing method
Marching cubes
Three-dimensional reconstruction
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_18c35901f9fcadb66f737255c37bc869
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/2350
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]
title Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]
spellingShingle Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]
Stomach tumor
Type 2 cancer
Medical imaging
Multi–slice computerized tomography
Image enhancement
Region growing method
Marching cubes
Three-dimensional reconstruction
title_short Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]
title_full Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]
title_fullStr Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]
title_full_unstemmed Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]
title_sort Computational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]
dc.creator.fl_str_mv Chacón, Gerardo
Rodríguez, Johel E.
Bermúdez, Valmore
Vera, Miguel
Hernández, Juan Diego
Vargas, Sandra
Pardo, Aldo
Lameda, Carlos
Madriz, Delia
Bravo, Antonio J.
dc.contributor.author.none.fl_str_mv Chacón, Gerardo
Rodríguez, Johel E.
Bermúdez, Valmore
Vera, Miguel
Hernández, Juan Diego
Vargas, Sandra
Pardo, Aldo
Lameda, Carlos
Madriz, Delia
Bravo, Antonio J.
dc.subject.eng.fl_str_mv Stomach tumor
Type 2 cancer
Medical imaging
Multi–slice computerized tomography
Image enhancement
Region growing method
Marching cubes
Three-dimensional reconstruction
topic Stomach tumor
Type 2 cancer
Medical imaging
Multi–slice computerized tomography
Image enhancement
Region growing method
Marching cubes
Three-dimensional reconstruction
description Background: The multi–slice computerized tomography (MSCT) is a medical imaging modality that has been used to determine the size and location of the stomach cancer. Additionally, MSCT is considered the best modality for the staging of gastric cancer. One way to assess the type 2 cancer of stomach is by detecting the pathological structure with an image segmentation approach. The tumor segmentation of MSCT gastric cancer images enables the diagnosis of the disease condition, for a given patient, without using an invasive method as surgical intervention. Methods: This approach consists of three stages. The initial stage, an image enhancement, consists of a method for correcting non homogeneities present in the background of MSCT images. Then, a segmentation stage using a clustering method allows to obtain the adenocarcinoma morphology. In the third stage, the pathology region is reconstructed and then visualized with a three–dimensional (3–D) computer graphics procedure based on marching cubes algorithm. In order to validate the segmentations, the Dice score is used as a metric function useful for comparing the segmentations obtained using the proposed method with respect to ground truth volumes traced by a clinician. Results: A total of 8 datasets available for patients diagnosed, from the cancer data collection of the project, Cancer Genome Atlas Stomach Adenocarcinoma (TCGASTAD) is considered in this research. The volume of the type 2 stomach tumor is estimated from the 3–D shape computationally segmented from the each dataset. These 3–D shapes are computationally reconstructed and then used to assess the morphopathology macroscopic features of this cancer. Conclusions: The segmentations obtained are useful for assessing qualitatively and quantitatively the stomach type 2 cancer. In addition, this type of segmentation allows the development of computational models that allow the planning of virtual surgical processes related to type 2 cancer.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-13T22:04:48Z
dc.date.available.none.fl_str_mv 2018-11-13T22:04:48Z
dc.date.issued.none.fl_str_mv 2018-07
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 20461402
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/2350
identifier_str_mv 20461402
url http://hdl.handle.net/20.500.12442/2350
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv F1000 Research Ltda.
dc.source.eng.fl_str_mv F1000 Research
dc.source.spa.fl_str_mv Vol. 7, No.1098 (2018)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://f1000researchdata.s3.amazonaws.com/manuscripts/18013/b79a3338-adf4-4ee7-bdb2-6cde1e2e3ced_14491_-_gerardo_chacon_v2.pdf?doi=10.12688/f1000research.14491.2&numberOfBrowsableCollections=14&numberOfBrowsableGateways=22
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/399d55d1-6162-4393-b49f-6418f9541e05/download
https://bonga.unisimon.edu.co/bitstreams/d5892a77-d48a-4234-9283-9f18d7f7dfd7/download
https://bonga.unisimon.edu.co/bitstreams/73d498b1-21a5-4657-a5b8-5a1b45ada171/download
https://bonga.unisimon.edu.co/bitstreams/e47ba5e2-6d77-4dcf-9610-9efbb80cacc5/download
https://bonga.unisimon.edu.co/bitstreams/a5c0c13b-f4c0-4e53-ba00-fdb5a8d1be6a/download
https://bonga.unisimon.edu.co/bitstreams/f73a0ad0-3cd5-4cd6-9383-bcbe1ca2bd85/download
bitstream.checksum.fl_str_mv c9a5dcfdb9bedad29cb61b05f2c7d58c
3fdc7b41651299350522650338f5754d
9394f8947772899f0a3ae608dbef87cc
5d6b3eaab044c0af113b6dbae4f366c0
7e6a73d173b9a2b95637294a1a6069c3
d3473a109bb588f5a2ad41d18cc9874f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076098718203904
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Chacón, Gerardo09c43ece-2735-4074-9b8c-5852a95df0e4-1Rodríguez, Johel E.c676ecb4-6592-4c68-a85c-37fda5ef7e00-1Bermúdez, Valmore29f9aa18-16a4-4fd3-8ce5-ed94a0b8663a-1Vera, Miguelc485e4e3-5bbd-4d00-8ec7-e5bc8a0a21e3-1Hernández, Juan Diegod2e3538d-158e-424a-a3d4-37f5b19a238c-1Vargas, Sandra4cca68cc-a0b3-45aa-b15f-adb1e5f084ef-1Pardo, Aldo5d072c76-2eb5-4582-86ba-0510c45cb635-1Lameda, Carlosb1602821-ee77-4fdc-8edb-bc17489e41e1-1Madriz, Delia77dfe655-dfc5-4477-bda3-8b6495eb9dda-1Bravo, Antonio J.ebf65d70-b96f-4faf-88f7-d30c02ee6858-12018-11-13T22:04:48Z2018-11-13T22:04:48Z2018-0720461402http://hdl.handle.net/20.500.12442/2350Background: The multi–slice computerized tomography (MSCT) is a medical imaging modality that has been used to determine the size and location of the stomach cancer. Additionally, MSCT is considered the best modality for the staging of gastric cancer. One way to assess the type 2 cancer of stomach is by detecting the pathological structure with an image segmentation approach. The tumor segmentation of MSCT gastric cancer images enables the diagnosis of the disease condition, for a given patient, without using an invasive method as surgical intervention. Methods: This approach consists of three stages. The initial stage, an image enhancement, consists of a method for correcting non homogeneities present in the background of MSCT images. Then, a segmentation stage using a clustering method allows to obtain the adenocarcinoma morphology. In the third stage, the pathology region is reconstructed and then visualized with a three–dimensional (3–D) computer graphics procedure based on marching cubes algorithm. In order to validate the segmentations, the Dice score is used as a metric function useful for comparing the segmentations obtained using the proposed method with respect to ground truth volumes traced by a clinician. Results: A total of 8 datasets available for patients diagnosed, from the cancer data collection of the project, Cancer Genome Atlas Stomach Adenocarcinoma (TCGASTAD) is considered in this research. The volume of the type 2 stomach tumor is estimated from the 3–D shape computationally segmented from the each dataset. These 3–D shapes are computationally reconstructed and then used to assess the morphopathology macroscopic features of this cancer. Conclusions: The segmentations obtained are useful for assessing qualitatively and quantitatively the stomach type 2 cancer. In addition, this type of segmentation allows the development of computational models that allow the planning of virtual surgical processes related to type 2 cancer.engF1000 Research Ltda.F1000 ResearchVol. 7, No.1098 (2018)https://f1000researchdata.s3.amazonaws.com/manuscripts/18013/b79a3338-adf4-4ee7-bdb2-6cde1e2e3ced_14491_-_gerardo_chacon_v2.pdf?doi=10.12688/f1000research.14491.2&numberOfBrowsableCollections=14&numberOfBrowsableGateways=22Stomach tumorType 2 cancerMedical imagingMulti–slice computerized tomographyImage enhancementRegion growing methodMarching cubesThree-dimensional reconstructionComputational assessment of stomach tumor volume from multi-slice computerized tomography images in presence of type 2 cancer [version 2; referees: 1 approved, 1 not approved]articlehttp://purl.org/coar/resource_type/c_6501Rubin GD: Computed tomography: revolutionizing the practice of medicine for 40 years. Radiology. 2014; 273(2 Suppl): S45–S74.Flohr TG, Schaller S, Stierstorfer K, et al.: Multi-detector row CT systems and image-reconstruction techniques. Radiology. 2005; 235(3): 756–773.Ginat DT, Gupta R: Advances in computed tomography imaging technology. Annu Rev Biomed Eng. 2014; 16(1): 431–453.Park SR, Lee JS, Kim CG, et al.: Endoscopic ultrasound and computed tomography in restaging and predicting prognosis after neoadjuvant chemotherapy in patients with locally advanced gastric cancer. Cancer. 2008; 112(11): 2368–2376.Hallinan JT, Venkatesh SK: Gastric carcinoma: imaging diagnosis, staging and assessment of treatment response. Cancer Imaging. 2013; 13(2): 212–227.Bankman I: Handbook of Medical Imaging: Processing and analysis. Academic Press, San Diego, 2000.Angelini ED, Laine AF, Takuma S, et al.: LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography. IEEE Trans Med Imaging. 2001; 20(6): 457–469.Nelson TR, Elvins TT: Visualization of 3D ultrasound data. IEEE Comput Graph Appl. 1993; 13(6): 50–57.Field MJ: Telemedicine: A Guide to Assessing Telecommunications in Health Care. Institute of Medicine, National Academy Press, Washington, 1996.DICOM: Digital imaging and communication in medicine DICOM. NEMA Standards Publication, 1999.Fu KS, Mui JK: A survey on image segmentation. Pattern Recognit. 1981; 13(1): 3–16.Duda R, Hart P, Stork D: Pattern Classification. Wiley-Interscience, New York, 2000.Kervrann C, Heitz F: Statistical deformable model-based segmentation of image motion. IEEE Trans Image Process. 1999; 8(4): 583–588.Mitchell SC, Lelieveldt BP, van der Geest RJ, et al.: Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images. IEEE Trans Med Imaging. 2001; 20(5): 415–423.Borrmann R: [Geschwulste des margens]. In Henke F, and Lubarsch O, editors, Handbuch spez pathol anat und hist, Springer-Verlag, 1926; 864–871.Japanese Gastric Cancer Association: Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011; 14(2): 101–112.Kajitani T: The general rules for the gastric cancer study in surgery and pathology. Part I. Clinical classification. Jpn J Surg. 1981; 11(2): 127–139.Plan of Action for the Prevention and Control of NCDs in the Americas 2013-2019. Technical Report Washington DC, Pan American Health Organization, 2014.Seventieth World Health Assembly: Technical Report Geneva, World Health Organization, Resolutions and Decisions Annexes, 2017.Sierra MS, Soerjomataram I, Antoni S, et al.: Cancer patterns and trends in Central and South America. Cancer Epidemiol. 2016; 44 Suppl 1: S23–S42.Lucchesi FR, Aredes ND: Radiology Data from The Cancer Genome Atlas Stomach Adenocarcinoma [TCGA-STAD] collection, 2016. The Cancer Imaging Archive.Clark K, Vendt B, Smith K, et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013; 26(6): 1045–1057.Jaffe CC: Imaging and genomics: is there a synergy? Radiology. 2012; 264(2): 329–331.Bravo: An image enhancement approach. Zenodo. 2018.Jähne B: Digital Image Processing-Concepts, Algorithms, and Scientific Applications. Springer, Berlin, 2 edition, 1993.Roa F, Bravo A, Valery A: Automated characterization of bacteria in confocal microscope images. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage AK, 2008; 1–8.Bravo A, Medina R, Garreau M, et al.: An approach to coronary vessels detection in x-ray rotational angiography. In Müller C, Wong S, and La Cruz A, editors, IV Latin American Congress on Biomedical Engineering, Springer, 2007; 254–258.Bravo A, Medina R, Díaz JA: A clustering based approach for automatic image segmentation: An application to biplane ventriculograms. In Martínez J, Carrasco J, and Kittler J, editors, Progress in Pattern Recognition, Image Analysis and Applications, Springer, 2006; 316–325.Schroeder W: The visualization toolkit: an object–oriented approach to 3D graphics. Kitware Clifton Park, N.Y, 2006.Avila L, Kitware: The VTK User’s Guide. Kitware Inc, 2010.Salomon D: Computer Graphics and Geometric Modeling. Springer Publishing Company, Incorporated, 2013.Lorensen WE, Cline HE: Marching cubes: A high resolution 3d surface construction algorithm. Comput Graph. 1987; 21(4): 163–169.Dice L: Measures of the amount of ecologic association between species. Ecology. 1945; 26(3): 297–302.Bravo A, Chacón G, Rodriguez J, et al.: Dice coefficient in MatLab (Version V1). Zenodo. 2018.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1245176https://bonga.unisimon.edu.co/bitstreams/399d55d1-6162-4393-b49f-6418f9541e05/downloadc9a5dcfdb9bedad29cb61b05f2c7d58cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/d5892a77-d48a-4234-9283-9f18d7f7dfd7/download3fdc7b41651299350522650338f5754dMD52TEXTComputational assessment of stomach tumor.pdf.txtComputational assessment of stomach tumor.pdf.txtExtracted texttext/plain43103https://bonga.unisimon.edu.co/bitstreams/73d498b1-21a5-4657-a5b8-5a1b45ada171/download9394f8947772899f0a3ae608dbef87ccMD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain47597https://bonga.unisimon.edu.co/bitstreams/e47ba5e2-6d77-4dcf-9610-9efbb80cacc5/download5d6b3eaab044c0af113b6dbae4f366c0MD55THUMBNAILComputational assessment of stomach tumor.pdf.jpgComputational assessment of stomach tumor.pdf.jpgGenerated Thumbnailimage/jpeg1790https://bonga.unisimon.edu.co/bitstreams/a5c0c13b-f4c0-4e53-ba00-fdb5a8d1be6a/download7e6a73d173b9a2b95637294a1a6069c3MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg6165https://bonga.unisimon.edu.co/bitstreams/f73a0ad0-3cd5-4cd6-9383-bcbe1ca2bd85/downloadd3473a109bb588f5a2ad41d18cc9874fMD5620.500.12442/2350oai:bonga.unisimon.edu.co:20.500.12442/23502024-07-25 03:06:30.39open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=