Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen
Breast cancer is a group of multigenic diseases. It is the most common cancer diagnosed among women worldwide and is often treated with tamoxifen. Tamoxifen is catalysed by cytochrome P450 2D6 (CYP2D6), and inter-individual variations in the enzyme due to single nucleotide polymorphisms (SNPs) could...
- Autores:
-
Ariza Márquez, Yeimy Viviana
Briceño, Ignacio
Aristizábal, Fabio
Niño, Luis Fernando
Yosa Reyes, Juvenal
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/2676
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/2676
- Palabra clave:
- Breast cancer
Cancer - Treatment
Cancer - Genetic aspects
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id |
USIMONBOL2_1364c6e1c49326cfa17f4c47947c1cfb |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/2676 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen |
title |
Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen |
spellingShingle |
Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen Breast cancer Cancer - Treatment Cancer - Genetic aspects |
title_short |
Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen |
title_full |
Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen |
title_fullStr |
Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen |
title_full_unstemmed |
Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen |
title_sort |
Dynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifen |
dc.creator.fl_str_mv |
Ariza Márquez, Yeimy Viviana Briceño, Ignacio Aristizábal, Fabio Niño, Luis Fernando Yosa Reyes, Juvenal |
dc.contributor.author.none.fl_str_mv |
Ariza Márquez, Yeimy Viviana Briceño, Ignacio Aristizábal, Fabio Niño, Luis Fernando Yosa Reyes, Juvenal |
dc.subject.eng.fl_str_mv |
Breast cancer Cancer - Treatment Cancer - Genetic aspects |
topic |
Breast cancer Cancer - Treatment Cancer - Genetic aspects |
description |
Breast cancer is a group of multigenic diseases. It is the most common cancer diagnosed among women worldwide and is often treated with tamoxifen. Tamoxifen is catalysed by cytochrome P450 2D6 (CYP2D6), and inter-individual variations in the enzyme due to single nucleotide polymorphisms (SNPs) could alter enzyme activity. We evaluated SNPs in patients from Colombia in South America who were receiving tamoxifen treatment for breast cancer. Allelic diversity in the CYP2D6 gene was found in the studied population, with two patients displaying the poor-metaboliser phenotype. Molecular dynamics and trajectory analyses were performed for CYP2D6 from these two patients, comparing it with the common allelic form (CYP2D6*1). Although we found no significant structural change in the protein, its dynamics differ significantly from those of CYP2D6*1, the effect of such differential dynamics resulting in an inefficient enzyme with serious implications for tamoxifen-treated patients, increasing the risk of disease relapse and ineffective treatment. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-02-21T20:07:27Z |
dc.date.available.none.fl_str_mv |
2019-02-21T20:07:27Z |
dc.date.issued.none.fl_str_mv |
2019-02-21 |
dc.type.eng.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
20452322 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12442/2676 |
identifier_str_mv |
20452322 |
url |
http://hdl.handle.net/20.500.12442/2676 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional |
rights_invalid_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
dc.publisher.eng.fl_str_mv |
Springer |
dc.source.eng.fl_str_mv |
Scientific Reports |
dc.source.spa.fl_str_mv |
Vol. 9, No. 2521 (2019) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://www.nature.com/articles/s41598-018-38340-6 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/32e1544b-9f21-4613-a672-306ca45a82a3/download https://bonga.unisimon.edu.co/bitstreams/c08cafae-ac0d-4b41-98c4-b28ab7afed92/download https://bonga.unisimon.edu.co/bitstreams/a983b98e-a103-4ef9-82ea-08f3215ebd5f/download https://bonga.unisimon.edu.co/bitstreams/b99af96b-d1d3-43f5-9b98-7dbe97c482d2/download https://bonga.unisimon.edu.co/bitstreams/a8fec29a-a93a-4e55-bc28-27d8e8dd6391/download https://bonga.unisimon.edu.co/bitstreams/5dbc3b7a-3763-4392-b3ac-ddf3d4483ddd/download |
bitstream.checksum.fl_str_mv |
f468b20af48ced82178b356160b75416 3fdc7b41651299350522650338f5754d 4590125af960122e88c62543d963b084 9e10bede1bdd51fcf59ebf111df03736 adf2df9b5d401316d9b975d37d1fb78b c858329a7d52c5596f67ed6214cdf365 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076144919511040 |
spelling |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Ariza Márquez, Yeimy Vivianaa715988f-d240-4ddb-9823-fd2c0913bb62Briceño, Ignacio0adcd0b1-abc1-4b3a-b5fc-98a88896d5daAristizábal, Fabio9c24243f-8e11-4399-9761-f9b17414d3adNiño, Luis Fernandofaa0c1c4-4ca2-4a75-a505-a25d72dcd7afYosa Reyes, Juvenal83d2abea-d832-4a13-8dd3-e553c61757a82019-02-21T20:07:27Z2019-02-21T20:07:27Z2019-02-2120452322http://hdl.handle.net/20.500.12442/2676Breast cancer is a group of multigenic diseases. It is the most common cancer diagnosed among women worldwide and is often treated with tamoxifen. Tamoxifen is catalysed by cytochrome P450 2D6 (CYP2D6), and inter-individual variations in the enzyme due to single nucleotide polymorphisms (SNPs) could alter enzyme activity. We evaluated SNPs in patients from Colombia in South America who were receiving tamoxifen treatment for breast cancer. Allelic diversity in the CYP2D6 gene was found in the studied population, with two patients displaying the poor-metaboliser phenotype. Molecular dynamics and trajectory analyses were performed for CYP2D6 from these two patients, comparing it with the common allelic form (CYP2D6*1). Although we found no significant structural change in the protein, its dynamics differ significantly from those of CYP2D6*1, the effect of such differential dynamics resulting in an inefficient enzyme with serious implications for tamoxifen-treated patients, increasing the risk of disease relapse and ineffective treatment.engSpringerScientific ReportsVol. 9, No. 2521 (2019)https://www.nature.com/articles/s41598-018-38340-6Breast cancerCancer - TreatmentCancer - Genetic aspectsDynamic Effects of CYP2D6 Genetic Variants in a Set of Poor Metaboliser Patients with Infiltrating Ductal Cancer Under Treatment with Tamoxifenarticlehttp://purl.org/coar/resource_type/c_6501Ferlay, J. et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. Int. J. Cancer 136, E359–E386, https://doi.org/10.1002/ijc.29210 (2015).Zafra-Ceres, M. et al. Influence of CYP2D6 polymorphisms on serum levels of tamoxifen metabolites in Spanish women with breast cancer. Int. J. Med. Sci., https://doi.org/10.7150/ijms.5708 (2013).Hoskins, J. M., Carey, L. A. & McLeod, H. L. CYP2D6 and tamoxifen: DNA matters in breast cancer, https://doi.org/10.1038/nrc2683 (2009).The Cancer Atlas estimated new breast cancer cases and deaths by region, http://canceratlas.cancer.org/the-burden/breast-cancer. Accessed: 2018-03-15 (2012).Knaul, F. M. et al. Meeting the emerging challenge of breast and cervical cancer in low- and middle-income countries. Int J Gynaecol Obstet, https://doi.org/10.1016/j.ijgo.2012.03.024 (2012).Luciani, S., Cabanes, A., Prieto-Lara, E. & Gawryszewski, V. Cervical and female breast cancers in the Americas: current situation and opportunities for action. Bull. World Heal. Organ., https://doi.org/10.2471/BLT.12.116699 (2013).Justoa, N., Wilkingb, J., Jonssonc, J., Lucianid, S. & Cazape, E. A review of breast cancer care and outcomes in Latin America. The oncologist, https://doi.org/10.1634/theoncologist.2012-0373 (2013).Lozano-Ascencio, R., Gómez-Dantés, H., Lewis, S., Torres-Sánchez, L. & López-Carrillo, L. Breast cancer trends in Latin America and the Caribbean. Salud Pública De México, https://doi.org/10.1590/S0036-36342009000800004 (2009).Porter, P. L. Global trends in breast cancer incidence and mortality. Salud Publica de Mexico, https://doi.org/10.1590/S0036-36342009000800003 (2009).Amadou, A., Torres-Mejía, G., Hainaut, P. & Romieu, I. Breast cancer in Latin America: global burden, patterns, and risk factors. Cáncer de mama en América Latina: carga, patrones y factores de riesgo (2014).Bravo, L. E., García, L. S., Carrascal, E. & Rubiano, J. Burden of breast cancer in Cali, Colombia: 1962–2012. Salud Publica de Mexico (2014).Jemal, A., Center, M., DeSantis, C. & Ward, E. Global patterns of cancer incidence and mortality rates and trends, https://doi.org/10.1158/1055-9965.EPI-10-0437 (2010).Jordan, V. C. Fourteenth Gaddum Memorial Lecture. A current view of tamoxifen for the treatment and prevention of breast cancer. Br J Pharmacol (1993).(EBCTCG), E. B. C. T. C. G. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: Patient-level meta-analysis of randomised trials. The Lancet, https://doi.org/10.1016/S0140-6736(11)60993-8 (2011).van Hellemond, I. E., Geurts, S. M. & Tjan-Heijnen, V. C. Current status of extended adjuvant endocrine therapy in early stage breast cancer. Curr. treatment options oncology 19, 1–18 (2018).Borgna J. L., R. H. Hydroxylated metabolites of tamoxifen are formed in vivo and bound to estrogen receptor in target tissues. J. Biol. Chem. (1981).Jordan, V. C. & O’Malley, B. W. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer, https://doi.org/10.1200/JCO.2007.11.3886 (2007).Schroth, W. et al. Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA - J. Am. Med. Assoc (2009).LLerena, A. et al. Interethnic variability of CYP2D6 alleles and of predicted and measured metabolic phenotypes across world populations. Expert. Opin. on Drug Metab. & Toxicol., https://doi.org/10.1517/17425255.2014.964204 (2014).Lim, H. S. et al. Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J. Clin. Oncol., https://doi.org/10.1200/JCO.2007.11.4850 (2007).Madlensky, L. et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin. Pharmacol. Ther., https://doi.org/10.1038/clpt.2011.32. NIHMS150003 (2011).Fukuyoshi, S. et al. Molecular dynamics simulations to investigate the influences of amino acid mutations on protein three-dimensional structures of cytochrome P450 2D6.1, 2, 10, 14A, 51, and 62. PLoS ONE, https://doi.org/10.1371/journal.pone.0152946 (2016).Nair, P. C., McKinnon, R. A. & Miners, J. O. Cytochrome p450 structure–function: insights from molecular dynamics simulations. Drug Metab. Rev. 48, 434–452, https://doi.org/10.1080/03602532.2016.1178771 (2016).Fischer, A., Don, C. G. & Smieško, M. Molecular dynamics simulations reveal structural differences among allelic variants of membrane-anchored cytochrome p450 2d6. J. Chem. Inf. Model. 58, 1962–1975, https://doi.org/10.1021/acs.jcim.8b00080 (2018).Skopalk, J., Anzenbacher, P. & Otyepka, M. Flexibility of human cytochromes p450: Molecular dynamics reveals differences between cyps 3a4, 2c9, and 2a6, which correlate with their substrate preferences. The J. Phys. Chem. B 112, 8165–8173, https://doi.org/10.1021/jp800311c (2008).Ismael, M. & Del Carpio, C. Elucidate the origin of CYP flexible structural variation using molecular dynamics calculation. J. Toxicol. Environ. Heal. Sci. (2011).De Waal, P. W., Sunden, K. F. & Furge, L. L. Molecular dynamics of CYP2D6 polymorphisms in the absence and presence of a mechanism-based inactivator reveals changes in local flexibility and dominant substrate access channels. PLoS ONE, https://doi.org/10.1371/journal.pone.0108607 (2014).Hicks, J. et al. Clinical pharmacogenetics implementation consortium guideline for cyp2d6 and cyp2c19 genotypes and dosing of tricyclic antidepressants. Clin. Pharmacol. & Ther. 93, 402–408 (2013).Hicks, J. et al. Clinical pharmacogenetics implementation consortium guideline for cyp2d6 and cyp2c19 genotypes and dosing of tricyclic antidepressants. Clin. Pharmacol. & Ther. 93, 402–408 (2013).Isaza, C., Henao, J., López, A. & Cacabelos, R. Isolation, sequence and genotyping of the drug metabolizer cyp2d6 gene in the colombian population. Methods findings experimental clinical pharmacology 22, 695 (2000).Jorge, L. F., Eichelbaum, M., Griese, E.-U., Inaba, T. & Arias, T. D. Comparative evolutionary pharmacogenetics of cyp2d6 in ngawbe and embera amerindians of panama and colombia: role of selection versus drift in world populations. Pharmacogenetics 9, 217–228 (1999).Hennig, E. E. et al. Limited predictive value of achieving beneficial plasma (Z)-endoxifen threshold level by CYP2D6 genotyping in tamoxifen-treated Polish women with breast cancer. Biomed Cent. Cancer, https://doi.org/10.1186/s12885-015-1575-4 (2015).Murdter, T. et al. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase i and ii enzymes on their concentration levels in plasma. Clin. Pharmacol. & Ther. 89, 708–717, https://doi.org/10.1038/clpt.2011.27 (2011).Hertz, D., Deal, A. & Ibrahim, J. E. A. Tamoxifen Dose Escalation in PatientsWith Diminished CYP2D6 Activity Normalizes Endoxifen Concentrations Without Increasing Toxicity. The Oncol., https://doi.org/10.1634/theoncologist.2015-0480 (2016).Dezentjé, V. O. et al. CYP2D6 genotype- and endoxifen-guided tamoxifen dose escalation increases endoxifen serum concentrations without increasing side effects. Breast Cancer Res. Treat., https://doi.org/10.1007/s10549-015-3562-5 (2015).Antunes, M. V. et al. Endoxifen Levels and Its Association With CYP2D6 Genotype and Phenotype: Evaluation of a Southern Brazilian Population Under Tamoxifen Pharmacotherapy. Ther. Drug Monit. 34, 422–431, https://doi.org/10.1186/s12885-015-1575-4 (2012).Lv, X., Wang, B., Jianbin, C. & Ye, J. Clinical observation of depression after breast cancer operation treated with aurieular point sticking therapy. Zhongguo zhen jiu=Chin. acupuncture & moxibustion (2015).Hurtado-de Mendoza, A., Jensen, R. E., Jennings, Y. & Sheppard, V. B. Understanding breast cancer survivors’ beliefs and concerns about adjuvant hormonal therapy: Promoting adherence. J. Cancer Educ., https://doi.org/10.1007/s13187-017-1180-0 (2017).Donzelli, M. et al. The Basel cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots. Clin. Pharmacokinet., https://doi.org/10.1007/s40262-013-0115-0 (2014).Binkhorst, L. et al. Circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients. Breast Cancer Res. Treat., https://doi.org/10.1007/s10549-015-3452-x (2015).rs1135840 dbsnp. https://www.ncbi.nlm.nih.gov/snp/rs1135840. Accessed: 2018-12-10.Johnson, E. F. & Stout, C. D. Structural diversity of eukaryotic membrane cytochrome P450s, https://doi.org/10.1074/jbc.R113.452805 (2013).Lampe, J., Brandman, R., Sivaramakrishnan, S. & de Montellano, P. Two-dimensional nmr and all-atom molecular dynamics of cytochrome p450 cyp119 reveal hidden conformational substates. J Biol Chem. 285, 9594–603, https://doi.org/10.1371/journal.pone.0108607 (2010).Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A. & Caves, L. S. Bio3d: an R package for the comparative analysis of protein structures. Bioinforma (Oxford, England) (2006).Chovancová, E. et al. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures. PLOS Comput. Biol., https://doi.org/10.1371/journal.pcbi.1002708 (2012).Hartshorne, T. A High-throughput Real-time PCR Approach to Pharmacogenomics Studies. J. Pharmacogenomics & Pharmacoproteomics, https://doi.org/10.4172/2153-0645.1000133 (2013).Heath, D. D., Flatt, S. W., Wu, A. H., Pruitt, M. A. & Rock, C. L. Evaluation of tamoxifen and metabolites by LC-MS/MS and HPLC methods. Br. J. Biomed. Sci., https://doi.org/10.1080/09674845.2014.11669960. NIHMS150003 (2014).Wang, A., Savas, U., Hsu, M.-H., Stout, C. D. & Johnson, E. F. Crystal Structure of Human Cytochrome P450 2D6 with Prinomastat Bound. J. Biol. Chem., https://doi.org/10.1074/jbc.M111.307918 (2012).Pettersen, E. F. et al. UCSF Chimera - A visualization system for exploratory research and analysis. J. Comput. Chem., https://doi.org/10.1002/jcc.20084. arXiv:1011.1669v3 (2004).Maier, J. A. et al. ff14sb: Improving the accuracy of protein side chain and backbone parameters from ff99sb. J. Chem. Theory Comput. 11, 3696–3713, https://doi.org/10.1021/acs.jctc.5b00255 (2015).Shahrokh, K., Orendt, A., Yost, G. S. & Cheatham, T. E. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle. J. Comput. Chem., https://doi.org/10.1002/jcc.21922 (2012).Jorgensen, W. L. et al. Comparison of simple potential functions for simulating liquid water Comparison of simple potential functions for simulating liquid water. J. Chem. Phys, https://doi.org/10.1063/1.445869 (1983).Harvey, M. J. & De Fabritiis, G. An implementation of the smooth particle mesh Ewald method on GPU hardware. J. Chem. Theory Comput., https://doi.org/10.1021/ct900275y (2009).Ryckaert, J. P., Ciccotti, G. & Berendsen, H. J. C. Numerical-Integration of Cartesian Equations of Motion of a System with Constraints - Molecular-Dynamics of N-Alkanes. J. Comput. Phys., https://doi.org/10.1016/0021-9991(77)90098-5 (1977).Le Grand, S., Götz, A. W. & Walker, R. C. SPFP: Speed without compromise - A mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun., https://doi.org/10.1016/j.cpc.2012.09.022 (2013).Feig, M., Karanicolas, J. & Brooks, C. L. MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J. molecular graphics & modelling, https://doi.org/10.1016/j.jmgm.2003.12.005 (2004).Borbón Orjuela, A. R. Estudio del polimorfismo del citocromo 2d6 en una población colombiana. B.S. thesis, Facultad de Ciencias (2009).Sánchez, A. P. S. Farmacogenética del CYP2D6 en la población colombiana en relación con las iberoamericanas. Ph.D. thesis, Universidad de Extremadura (2015).rs16947 dbsnp. https://www.ncbi.nlm.nih.gov/snp/rs16947. Accessed: 2018-12-10.rs1065852 dbsnp. https://www.ncbi.nlm.nih.gov/snp/rs1065852. Accessed: 2018-12-10.rs3892097 pharmgkb. https://www.pharmgkb.org/variant/PA166156104/overview. Accessed: 2018-12-10.rs5030656 dbsnp. https://www.ncbi.nlm.nih.gov/snp/rs5030656. Accessed: 2018-12-10.Case, D. A. et al. Amber 14. University of California, San Francisco (2014).ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1871838https://bonga.unisimon.edu.co/bitstreams/32e1544b-9f21-4613-a672-306ca45a82a3/downloadf468b20af48ced82178b356160b75416MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/c08cafae-ac0d-4b41-98c4-b28ab7afed92/download3fdc7b41651299350522650338f5754dMD52TEXTDynamic Effects of CYP2D6.pdf.txtDynamic Effects of CYP2D6.pdf.txtExtracted texttext/plain61727https://bonga.unisimon.edu.co/bitstreams/a983b98e-a103-4ef9-82ea-08f3215ebd5f/download4590125af960122e88c62543d963b084MD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain66587https://bonga.unisimon.edu.co/bitstreams/b99af96b-d1d3-43f5-9b98-7dbe97c482d2/download9e10bede1bdd51fcf59ebf111df03736MD55THUMBNAILDynamic Effects of CYP2D6.pdf.jpgDynamic Effects of CYP2D6.pdf.jpgGenerated Thumbnailimage/jpeg1929https://bonga.unisimon.edu.co/bitstreams/a8fec29a-a93a-4e55-bc28-27d8e8dd6391/downloadadf2df9b5d401316d9b975d37d1fb78bMD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg6570https://bonga.unisimon.edu.co/bitstreams/5dbc3b7a-3763-4392-b3ac-ddf3d4483ddd/downloadc858329a7d52c5596f67ed6214cdf365MD5620.500.12442/2676oai:bonga.unisimon.edu.co:20.500.12442/26762024-08-14 21:53:44.069open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4= |