Estimation of PQ distance dispersion for atrial fibrillation detection
Background and objective: Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. It is associated with significantly increased morbidity and mortality. Diagnosis of the disease can be based on the analysis of the electrical atrial activity, on quantification of the heart rate i...
- Autores:
-
Giraldo-Guzmán, Jader
Kotas, Marian
Castells, Francisco
Contreras-Ortiz, Sonia H.
Urina-Triana, Miguel
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/7896
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/7896
https://doi.org/10.1016/j.cmpb.2021.106167
https://www.sciencedirect.com/science/article/abs/pii/S0169260721002418
- Palabra clave:
- ECG processing
Atrial fibrillation
PQ dispersion
Spatio–temporal filtering
Spatio–temporal patterns
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_109d66a3b3bd16c553cfd7ca8e13df20 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/7896 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Estimation of PQ distance dispersion for atrial fibrillation detection |
title |
Estimation of PQ distance dispersion for atrial fibrillation detection |
spellingShingle |
Estimation of PQ distance dispersion for atrial fibrillation detection ECG processing Atrial fibrillation PQ dispersion Spatio–temporal filtering Spatio–temporal patterns |
title_short |
Estimation of PQ distance dispersion for atrial fibrillation detection |
title_full |
Estimation of PQ distance dispersion for atrial fibrillation detection |
title_fullStr |
Estimation of PQ distance dispersion for atrial fibrillation detection |
title_full_unstemmed |
Estimation of PQ distance dispersion for atrial fibrillation detection |
title_sort |
Estimation of PQ distance dispersion for atrial fibrillation detection |
dc.creator.fl_str_mv |
Giraldo-Guzmán, Jader Kotas, Marian Castells, Francisco Contreras-Ortiz, Sonia H. Urina-Triana, Miguel |
dc.contributor.author.none.fl_str_mv |
Giraldo-Guzmán, Jader Kotas, Marian Castells, Francisco Contreras-Ortiz, Sonia H. Urina-Triana, Miguel |
dc.subject.eng.fl_str_mv |
ECG processing Atrial fibrillation PQ dispersion Spatio–temporal filtering Spatio–temporal patterns |
topic |
ECG processing Atrial fibrillation PQ dispersion Spatio–temporal filtering Spatio–temporal patterns |
description |
Background and objective: Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. It is associated with significantly increased morbidity and mortality. Diagnosis of the disease can be based on the analysis of the electrical atrial activity, on quantification of the heart rate irregularity or on a mixture of the both approaches. Since the amplitude of the atrial waves is small, their analysis can lead to false results. On the other hand, the heart rate based analysis usually leads to many unnecessary warnings. Therefore, our goal is to develop a new method for effective AF detection based on the analysis of the electrical atrial waves. Methods: The proposed method employs the fact that there is a lack of repeatable P waves preceding QRS complexes during AF. We apply the operation of spatio-temporal filtering (STF) to magnify and detect the prominent spatio-temporal patterns (STP) within the P waves in multi-channel ECG recordings. Later we measure their distances (PQ) to the succeeding QRS complexes, and we estimate dispersion of the ob- tained PQ series. For signals with normal sinus rhythm, this dispersion is usually very low, and contrary, for AF it is much raised. This allows for effective discrimination of this cardiologic disorder. Results: Tested on an ECG database consisting of AF cases, normal rhythm cases and cases with normal rhythm restored by the use of cardioversion, the method proposed allowed for AF detection with the accuracy of 98 . 75% on the basis of both 8–channel and 2–channel signals of 12 s length. When the signals length was decreased to 6 s, the accuracy varied in the range of 95% −97 . 5% depending on the number of channels and the dispersion measure applied. Conclusions: Our approach allows for high accuracy of atrial fibrillation detection using the analysis of electrical atrial activity. The method can be applied to an early detection of the desease and can advanta- geously be used to decrease the number of false warnings in systems based on the analysis of the heart rate. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-09T20:00:20Z |
dc.date.available.none.fl_str_mv |
2021-06-09T20:00:20Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.spa.fl_str_mv |
Artículo científico |
dc.identifier.issn.none.fl_str_mv |
01692607 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/7896 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.cmpb.2021.106167 |
dc.identifier.url.none.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0169260721002418 |
identifier_str_mv |
01692607 |
url |
https://hdl.handle.net/20.500.12442/7896 https://doi.org/10.1016/j.cmpb.2021.106167 https://www.sciencedirect.com/science/article/abs/pii/S0169260721002418 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
Computer Methods and Programs in Biomedicine |
dc.source.none.fl_str_mv |
Vol. 208, (2021) |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/f69f2bdd-a833-43ec-b2d3-868c84f61d64/download https://bonga.unisimon.edu.co/bitstreams/f67027c3-12eb-4696-94ba-fa8c8263430a/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076165620498432 |
spelling |
Giraldo-Guzmán, Jader490fdbba-2a94-40bd-8af8-543d85bf8c8fKotas, Mariana73c030c-d7f8-4122-a574-c6c4d29647c8Castells, Franciscoe6f70623-34e4-4801-896f-6e39226ebb84Contreras-Ortiz, Sonia H.68ef8d8a-5e58-4187-9778-f85a8ea4c801Urina-Triana, Migueld749d19c-0dae-4d0b-8e9a-6d623d682f9e2021-06-09T20:00:20Z2021-06-09T20:00:20Z202101692607https://hdl.handle.net/20.500.12442/7896https://doi.org/10.1016/j.cmpb.2021.106167https://www.sciencedirect.com/science/article/abs/pii/S0169260721002418Background and objective: Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. It is associated with significantly increased morbidity and mortality. Diagnosis of the disease can be based on the analysis of the electrical atrial activity, on quantification of the heart rate irregularity or on a mixture of the both approaches. Since the amplitude of the atrial waves is small, their analysis can lead to false results. On the other hand, the heart rate based analysis usually leads to many unnecessary warnings. Therefore, our goal is to develop a new method for effective AF detection based on the analysis of the electrical atrial waves. Methods: The proposed method employs the fact that there is a lack of repeatable P waves preceding QRS complexes during AF. We apply the operation of spatio-temporal filtering (STF) to magnify and detect the prominent spatio-temporal patterns (STP) within the P waves in multi-channel ECG recordings. Later we measure their distances (PQ) to the succeeding QRS complexes, and we estimate dispersion of the ob- tained PQ series. For signals with normal sinus rhythm, this dispersion is usually very low, and contrary, for AF it is much raised. This allows for effective discrimination of this cardiologic disorder. Results: Tested on an ECG database consisting of AF cases, normal rhythm cases and cases with normal rhythm restored by the use of cardioversion, the method proposed allowed for AF detection with the accuracy of 98 . 75% on the basis of both 8–channel and 2–channel signals of 12 s length. When the signals length was decreased to 6 s, the accuracy varied in the range of 95% −97 . 5% depending on the number of channels and the dispersion measure applied. Conclusions: Our approach allows for high accuracy of atrial fibrillation detection using the analysis of electrical atrial activity. The method can be applied to an early detection of the desease and can advanta- geously be used to decrease the number of false warnings in systems based on the analysis of the heart rate.pdfengElsevierAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computer Methods and Programs in BiomedicineVol. 208, (2021)ECG processingAtrial fibrillationPQ dispersionSpatio–temporal filteringSpatio–temporal patternsEstimation of PQ distance dispersion for atrial fibrillation detectioninfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1W. H. Organization, Cardiovascular diseases, 2017, ( http://www.who.int/ mediacentre/factsheets/fs317/en/ ).H. Kamel , P.M. Okin , M.S. Elkind , C. Iadecola , Atrial fibrillation and mechanisms of stroke: time for a new model, Stroke 47 (3) (2016) 895–900 .L. Sörnmo , Atrial Fibrillation from an Engineering Perspective, Springer, 2018 .X. Zhou , H. Ding , W. Wu , Y. Zhang , A real-time atrial fibrillation detection al- gorithm based on the instantaneous state of heart rate, PloS one 10 (9) (2015) e0136544 .M.S. Islam , N. Ammour , N. Alajlan , H. Aboalsamh , Rhythm-based heartbeat duration normalization for atrial fibrillation detection, Comput. Biol. Med. 72 (2016) 160–169 .R. Czabanski , K. Horoba , J. Wrobel , A. Matonia , R. Martinek , T. Kupka , M. Jezewski , R. Kahankova , J. Jezewski , J.M. Leski , Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine, Sensors 20 (3) (2020) 765 .A.M. Climent, M. de la Salud Guillem, D. Husser, F. Castells, J. Millet, A. Boll- mann, Poincarésurface profiles of RR intervals: a novel noninvasive method for the evaluation of preferential AV nodal conduction during atrial fibrilla- tion, IEEE Trans. Biomed. Eng. 56 (2) (2009) 433–442, doi: 10.1109/TBME.2008. 2003273 .E. Ebrahimzadeh , M. Kalantari , M. Joulani , R.S. Shahraki , F. Fayaz , F. Ahmadi , Prediction of paroxysmal atrial fibrillation: a machine learning based approach using combined feature vector and mixture of expert classification on HRV sig- nal, Comput. Methods. Programs Biomed. 165 (2018) 53–67 .P.M. Buscema , E. Grossi , G. Massini , M. Breda , F. Della Torre , Computer aided diagnosis for atrial fibrillation based on new artificial adaptive systems, Com- put. Methods Programs Biomed. 191 (2020) 105401 .R. Alcaraz , A. Martínez , J.J. Rieta , Role of the P-wave high frequency energy and duration as noninvasive cardiovascular predictors of paroxysmal atrial fibrilla- tion, Comput. Methods Programs Biomed. 119 (2) (2015) 110–119 .M. Stridh , L. Sörnmo , Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation, IEEE Trans. Biomed. Eng. 48 (2001) 105–111 .F. Castells , J.J. Rieta , J. Millet , V. Zarzoso , Spatiotemporal blind source sepa- ration approach to atrial activity estimation in atrial tachyarrhythmias, IEEE Trans. Biomed. Eng. 52 (2) (2005) 258–267 .S. Ladavich , B. Ghoraani , Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity, Biomed. Signal Process. Control 18 (2015) 274–281 .H. Pürerfellner , E. Pokushalov , S. Sarkar , J. Koehler , R. Zhou , L. Urban , G. Hin- dricks , P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors, Heart Rhythm 11 (9) (2014) 1575–1583 .S. Babaeizadeh , R.E. Gregg , E.D. Helfenbein , J.M. Lindauer , S.H. Zhou , Improve- ments in atrial fibrillation detection for real-time monitoring, J. Electrocardiol. 42 (6) (2009) 522–526 .R. Couceiro, P. Carvalho, J. Henriques, M. Antunes, M. Harris, J. Habetha, Detec- tion of atrial fibrillation using model-based ECG analysis (2008) 1–5.R. He , K. Wang , N. Zhao , Y. Liu , Y. Yuan , Q. Li , H. Zhang , Automatic detection of atrial fibrillation based on continuous wavelet transform and 2D convolutional neural networks, Front. Physiol. 9 (2018) 1206 .Y. Xia , N. Wulan , K. Wang , H. Zhang , Detecting atrial fibrillation by deep con- volutional neural networks, Comput. Biol. Med. 93 (2018) 84–92 .H. Shi , H. Wang , C. Qin , L. Zhao , C. Liu , An incremental learning system for atrial fibrillation detection based on transfer learning and active learning, Comput. Methods Programs Biomed. 187 (2020) 105219 .O. Yildirim , M. Talo , E.J. Ciaccio , R. San Tan , U.R. Acharya , Accurate deep neural network model to detect cardiac arrhythmia on more than 10,0 0 0 individual subject ecg records, Comput. Methods Programs Biomed. 197 (2020) 105740 .N.R. Jones, C.J. Taylor, F.D.R. Hobbs, L. Bowman, B. Casadei, Screening for atrial fibrillation: a call for evidence, Eur. Heart J. 41 (10) (2019) 1075–1085, doi: 10. 1093/eurheartj/ehz834 .J. Mandrola , A. Foy , Downsides of detecting atrial fibrillation in asymptomatic patients, Am. Family Physician 99 (2019) 354–355 .M. Kotas , J. Jezewski , K. Horoba , A. Matonia , Application of spatio-temporal filtering to fetal electrocardiogram enhancement, Comput. Methods Programs Biomed. 104 (1) (2011) 1–9 .F. Castells , Blind source separation with prior source knowledge for the analy- sis of atrial tachyarrhythmias. Signal modelling, estimation and validation, Uni- versitat Politècnica de València, Spain, 2003 Ph.D. thesis .A. Goldberger , L. Amaral , L. Glass , J. Hausdorff, P. Ivanov , R. Mark , J. Mietus , G. Moody , C. Peng , H. Stanley , Physiobank, physiotoolkit, and physionet: com- ponents of a new research resource for complex physiologic signals, Circulation 101 (20 0 0) e215–e220 .S.M. Kay , Fundamentals of Statistical Signal Processing, Prentice Hall PTR, 1993 .B. Yang , H. Li , Q. Wang , Y. Zhang , Subject-based feature extraction by us- ing fisher WPD-CSP in brain–computer interfaces, Comput. Methods Programs Biomed. 129 (2016) 21–28 .A. Miladinovi ´c , M. Aj ˇcevi ´c , J. Jarmolowska , U. Marusic , M. Colussi , G. Silveri , P.P. Battaglini , A. Accardo , Effect of power feature covariance shift on BCI spatial-filtering techniques: a comparative study, Comput. Methods Programs Biomed. 198 (2020) 105808 .J. Pan , W.J. Tompkins , A real-time QRS detection algorithm, IEEE Trans. Biomed. Eng. (3) (1985) 230–236 .H. Azami, K. Mohammadi, B. Bozorgtabar, An improved signal segmentation using moving average and Savitzky-Golay filter (2012).N. Miljkovi ´c , N. Popovi ´c , O. Djordjevi ´c , L. Konstantinovi ´c , T.B. Šekara ,ECG ar- tifact cancellation in surface EMG signals by fractional order calculus applica- tion, Comput. Methods Programs Biomed. 140 (2017) 259–264 .C. Croarkin, P. Tobias, J. Filliben, B. Hembree, W. Guthrie, et al., NIST/SEMATECH e-handbook of statistical methods, NIST/SEMATECH, July. Available online: http://www.itl.nist.gov/div898/handbook (2006).J.P. Martínez , R. Almeida , S. Olmos , A.P. Rocha , P. Laguna , A wavelet-based ECG delineator: evaluation on standard databases, IEEE Trans. Biomed. Eng. 51 (4) (2004) 570–581 .L.K. Saul , J.B. Allen , Periodic component analysis: an eigenvalue method for representing periodic structure in speech, in: Nips, 20 0 0, pp. 807–813 .R. Sameni , C. Jutten , M.B. Shamsollahi , Multichannel electrocardiogram decom- position using periodic component analysis, IEEE Trans. Biomed. Eng. 55 (8) (2008) 1935–1940 .V. Monasterio , G.D. Clifford , P. Laguna , J.P. MARTInez , A multilead scheme based on periodic component analysis for T-wave alternans analysis in the ECG, Ann. Biomed. Eng. 38 (8) (2010) 2532–2541 .J.M. Leski , M. Kotas , Hierarchical clustering with planar segments as proto- types, Pattern Recognit. Lett. 54 (2015) 1–10 .J.M. Leski , M. Kotas , On robust fuzzy c-regression models, Fuzzy Sets Syst. 279 (2015) 112–129 .CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/f69f2bdd-a833-43ec-b2d3-868c84f61d64/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/f67027c3-12eb-4696-94ba-fa8c8263430a/download733bec43a0bf5ade4d97db708e29b185MD5320.500.12442/7896oai:bonga.unisimon.edu.co:20.500.12442/78962024-08-14 21:54:33.418http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalmetadata.onlyhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |