Liouvillian solutions for second order linear diferential equations with polynomial coefcients

In this paper we present an algebraic study concerning the general second order linear diferential equation with polynomial coefcients. By means of Kovacic’s algorithm and asymptotic iteration method we fnd a degree independent algebraic description of the spectral set: the subset, in the parameter...

Full description

Autores:
Acosta‑Humánez, Primitivo B.
Blázquez‑Sanz, David
Venegas‑Gómez, Henock
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/6724
Acceso en línea:
https://hdl.handle.net/20.500.12442/6724
https://doi.org/10.1007/s40863-020-00186-0
https://link.springer.com/article/10.1007/s40863-020-00186-0
Palabra clave:
Anharmonic oscillators
Asymptotic iteration method
Kovacic algorithm
Liouvillian solutions
Parameter space
Quasi-solvable model
Schrödinger equation
Spectral varieties
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_0eba5faeff7cdab3bf044f3f03f84caf
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/6724
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Liouvillian solutions for second order linear diferential equations with polynomial coefcients
dc.title.abbreviated.eng.fl_str_mv São Paulo J. Math. Sci.
title Liouvillian solutions for second order linear diferential equations with polynomial coefcients
spellingShingle Liouvillian solutions for second order linear diferential equations with polynomial coefcients
Anharmonic oscillators
Asymptotic iteration method
Kovacic algorithm
Liouvillian solutions
Parameter space
Quasi-solvable model
Schrödinger equation
Spectral varieties
title_short Liouvillian solutions for second order linear diferential equations with polynomial coefcients
title_full Liouvillian solutions for second order linear diferential equations with polynomial coefcients
title_fullStr Liouvillian solutions for second order linear diferential equations with polynomial coefcients
title_full_unstemmed Liouvillian solutions for second order linear diferential equations with polynomial coefcients
title_sort Liouvillian solutions for second order linear diferential equations with polynomial coefcients
dc.creator.fl_str_mv Acosta‑Humánez, Primitivo B.
Blázquez‑Sanz, David
Venegas‑Gómez, Henock
dc.contributor.author.none.fl_str_mv Acosta‑Humánez, Primitivo B.
Blázquez‑Sanz, David
Venegas‑Gómez, Henock
dc.subject.eng.fl_str_mv Anharmonic oscillators
Asymptotic iteration method
Kovacic algorithm
Liouvillian solutions
Parameter space
Quasi-solvable model
Schrödinger equation
Spectral varieties
topic Anharmonic oscillators
Asymptotic iteration method
Kovacic algorithm
Liouvillian solutions
Parameter space
Quasi-solvable model
Schrödinger equation
Spectral varieties
description In this paper we present an algebraic study concerning the general second order linear diferential equation with polynomial coefcients. By means of Kovacic’s algorithm and asymptotic iteration method we fnd a degree independent algebraic description of the spectral set: the subset, in the parameter space, of Liouville integrable diferential equations. For each fxed degree, we prove that the spectral set is a countable union of non accumulating algebraic varieties. This algebraic description of the spectral set allow us to bound the number of eigenvalues for algebraically quasi-solvable potentials in the Schrödinger equation.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-10-20T18:21:17Z
dc.date.available.none.fl_str_mv 2020-10-20T18:21:17Z
dc.date.issued.none.fl_str_mv 2020-09-10
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.issn.none.fl_str_mv 23169028
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/6724
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s40863-020-00186-0
dc.identifier.url.none.fl_str_mv https://link.springer.com/article/10.1007/s40863-020-00186-0
identifier_str_mv 23169028
url https://hdl.handle.net/20.500.12442/6724
https://doi.org/10.1007/s40863-020-00186-0
https://link.springer.com/article/10.1007/s40863-020-00186-0
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv Springer
dc.source.eng.fl_str_mv São Paulo Journal of Mathematical Sciences
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/af507d8d-6017-4dc7-9577-b794d389e774/download
https://bonga.unisimon.edu.co/bitstreams/81209657-3c33-4852-94df-8bf851ec9842/download
https://bonga.unisimon.edu.co/bitstreams/2f0ce75f-029c-4b6f-a0d0-4b2c6d8d9a32/download
https://bonga.unisimon.edu.co/bitstreams/f8952ea1-2261-4c49-85bf-4ed81598a4e8/download
https://bonga.unisimon.edu.co/bitstreams/ac62ed9a-3e46-4e36-b8b3-04d26b3ec62d/download
https://bonga.unisimon.edu.co/bitstreams/8578e7b1-9ec1-4f78-b529-5e00eca71494/download
https://bonga.unisimon.edu.co/bitstreams/8a344d48-7d92-4825-be0f-9a9673c49b7d/download
bitstream.checksum.fl_str_mv ffbf7e0d867cd53336a7c3564d2fb525
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
edb301f4427e8e99793daa1729ba9659
04d768ecc718cba26c3fb6fa2625a1c4
c47857f309933084ce3495f28be58b37
dd4ae06b29405c40f586f64ea66fe2ef
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076108573769728
spelling Acosta‑Humánez, Primitivo B.52c4ca90-1a26-42d1-953b-2c003e3fe2daBlázquez‑Sanz, Davidad198f28-6b0e-4bba-819b-32969dfb2d70Venegas‑Gómez, Henockc39908ba-4473-4cdb-bc0e-e6c27782d57f2020-10-20T18:21:17Z2020-10-20T18:21:17Z2020-09-1023169028https://hdl.handle.net/20.500.12442/6724https://doi.org/10.1007/s40863-020-00186-0https://link.springer.com/article/10.1007/s40863-020-00186-0In this paper we present an algebraic study concerning the general second order linear diferential equation with polynomial coefcients. By means of Kovacic’s algorithm and asymptotic iteration method we fnd a degree independent algebraic description of the spectral set: the subset, in the parameter space, of Liouville integrable diferential equations. For each fxed degree, we prove that the spectral set is a countable union of non accumulating algebraic varieties. This algebraic description of the spectral set allow us to bound the number of eigenvalues for algebraically quasi-solvable potentials in the Schrödinger equation.pdfengSpringerAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2São Paulo Journal of Mathematical SciencesAnharmonic oscillatorsAsymptotic iteration methodKovacic algorithmLiouvillian solutionsParameter spaceQuasi-solvable modelSchrödinger equationSpectral varietiesLiouvillian solutions for second order linear diferential equations with polynomial coefcientsSão Paulo J. Math. Sci.info:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Acosta-Humánez, P., Blázquez-Sanz, D.: Non-integrability of some Hamiltonian systems with rational potential. Discrete Contin. Dyn. Syst. Ser. B 10(2–3), 265–293 (2008)Acosta-Humánez, P.B.: Galoisian Approach to Supersymmetric Quantum Mechanics. PhD thesis, Universitat Politècnica de Catalunya (2009). https://www.tdx.cat/handle/10803/22723Acosta-Humánez, P.B.: Galoisian Approach to Supersymmetric Quantum Mechanics. The Integrability Analysis of the Schrödinger Equation by Means of Diferential Galois Theory. VDM Verlag, Dr Müller, Saarbrücken, Deutschland (2010)Acosta-Humánez, P.B., Morales-Ruiz, J.J., Weil, J.-A.: Galoisian approach to integrability of schrödinger equation. Rep. Math. Phys. 67(3), 305–374 (2011)Bender, C., Dunne, G.: Quasi-exactly solvable systems and orthogonal polynomials. J. Math. Phys. 37(1), 6–11 (1996)Blázquez-Sanz, David, Yagasaki, Kazuyuki: Galoisian approach for a Sturm–Liouville problem on the infnite interval. Methods Appl. Anal. 19(3), 267–288 (2012)Ciftci, H., Hall, R., Saad, N.: Asymptotic iteration method for eigenvalue problems. J. Phys. A Math. Gen. 36(47), 11807–11816 (2003)Ciftci, H., Hall, R., Saad, N., Dogu, E.: Physical applications of second-order linear diferential equations that admit polynomial solutions. J. Phys. A Math. Theor. 43(41), 415206–415219 (2010)Combot, T.: Integrability of the one dimensional Schrödinger equation. J. Math. Phys. 59(2), 022105 (2018)Duval, A., Loday-Richaud, M.: Kovacic’s algorithm and its application to some families of special functions. Appl. Algebra Eng. Commun. Comput. 3(3), 211–246 (1992)Hall, R., Saad, N., Ciftci, H.: Sextic harmonic oscillators and orthogonal polynomials. J. Phys. A Math. Gen. 39(26), 8477–8486 (2006)Kovacic, J.: An algorithm for solving second order linear homogeneous diferential equations. J. Symb. Comput. 2(1), 3–43 (1986)Martinet, J., Ramis, J.-P.: Theorie de galois diferentielle et resommation. In: Tournier, E. (ed.) Computer Algebra and Diferential Equations, pp. 117–214. Academic Press, London (1989)Natanzon, G.A.: Investigation of a one dimensional Schrödinger equation that is generated by a hypergeometric equation. Vestnik Leningrad. Univ 10, 22–28 (1971). in RussianRainville, E.D.: Necessary conditions for polynomial solutions of certain Riccati equations. Am. Math. Mon. 43(8), 473–476 (1936)Saad, N., Hall, R., Ciftci, H.: Criterion for polynomial solutions to a class of linear diferential equations of second order. J. Phys. A Math. Gen. 39(43), 13445–13454 (2006)Singer, Michael F.: Moduli of linear diferential equations on the Riemann sphere with fxed Galois groups. Pac. J. Math. 160(2), 343–395 (1993)Turbiner, A.V.: Quantum mechanics: problems intermediate between exactly solvable and completely unsolvable. Soviet Phys. JETP 10(2), 230–236 (1988)Venegas-Gómez, H.: Enfoque galoisiano de la ecuación de schrödinger con potenciales polinomiales y polinomios de laurent. Master’s thesis, Universidad Nacional de Colombia, sede Medellín (2018). http://bdigital.unal.edu.co/71580/ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1622657https://bonga.unisimon.edu.co/bitstreams/af507d8d-6017-4dc7-9577-b794d389e774/downloadffbf7e0d867cd53336a7c3564d2fb525MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/81209657-3c33-4852-94df-8bf851ec9842/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/2f0ce75f-029c-4b6f-a0d0-4b2c6d8d9a32/download733bec43a0bf5ade4d97db708e29b185MD53TEXTAcosta-Humánez2020_Article_LiouvillianSolutionsForSecondO.pdf.txtAcosta-Humánez2020_Article_LiouvillianSolutionsForSecondO.pdf.txtExtracted texttext/plain43594https://bonga.unisimon.edu.co/bitstreams/f8952ea1-2261-4c49-85bf-4ed81598a4e8/downloadedb301f4427e8e99793daa1729ba9659MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain45638https://bonga.unisimon.edu.co/bitstreams/ac62ed9a-3e46-4e36-b8b3-04d26b3ec62d/download04d768ecc718cba26c3fb6fa2625a1c4MD56THUMBNAILAcosta-Humánez2020_Article_LiouvillianSolutionsForSecondO.pdf.jpgAcosta-Humánez2020_Article_LiouvillianSolutionsForSecondO.pdf.jpgGenerated Thumbnailimage/jpeg1546https://bonga.unisimon.edu.co/bitstreams/8578e7b1-9ec1-4f78-b529-5e00eca71494/downloadc47857f309933084ce3495f28be58b37MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5120https://bonga.unisimon.edu.co/bitstreams/8a344d48-7d92-4825-be0f-9a9673c49b7d/downloaddd4ae06b29405c40f586f64ea66fe2efMD5720.500.12442/6724oai:bonga.unisimon.edu.co:20.500.12442/67242024-08-14 21:52:28.916http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u