A model of anaerobic digestion for biogas production using abel equations

Mathematical models for biogas production are studied due to their importance in the use of control and optimization of renewable resources and clean energy. In this paper, we combine two algebraic methods to obtain solutions of Abel equation of first kind that arises from a mathematical model to bi...

Full description

Autores:
Acosta-Humánez, Primitivo B.
Machado Higuera, Maximiliano
Sinitsyn, Alexander V.
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1895
Acceso en línea:
http://hdl.handle.net/20.500.12442/1895
Palabra clave:
Abel equation
Biogas
Differential equations
Hamiltonian algebrization
Liouvillian solutions
Rights
License
licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_08733b62ffab92b83c015635ac44a14e
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1895
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv A model of anaerobic digestion for biogas production using abel equations
title A model of anaerobic digestion for biogas production using abel equations
spellingShingle A model of anaerobic digestion for biogas production using abel equations
Abel equation
Biogas
Differential equations
Hamiltonian algebrization
Liouvillian solutions
title_short A model of anaerobic digestion for biogas production using abel equations
title_full A model of anaerobic digestion for biogas production using abel equations
title_fullStr A model of anaerobic digestion for biogas production using abel equations
title_full_unstemmed A model of anaerobic digestion for biogas production using abel equations
title_sort A model of anaerobic digestion for biogas production using abel equations
dc.creator.fl_str_mv Acosta-Humánez, Primitivo B.
Machado Higuera, Maximiliano
Sinitsyn, Alexander V.
dc.contributor.author.none.fl_str_mv Acosta-Humánez, Primitivo B.
Machado Higuera, Maximiliano
Sinitsyn, Alexander V.
dc.subject.eng.fl_str_mv Abel equation
Biogas
Differential equations
Hamiltonian algebrization
Liouvillian solutions
topic Abel equation
Biogas
Differential equations
Hamiltonian algebrization
Liouvillian solutions
description Mathematical models for biogas production are studied due to their importance in the use of control and optimization of renewable resources and clean energy. In this paper, we combine two algebraic methods to obtain solutions of Abel equation of first kind that arises from a mathematical model to biogas production formulated in France on 2001. The aim of this paper is to obtain Liouvillian solutions of Abel’s equations through Hamiltonian algebrization. As an illustration, we present graphics of solutions for Abel equations and solutions for Abel equations in algebraic form.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2018-03-21T22:24:38Z
dc.date.available.none.fl_str_mv 2018-03-21T22:24:38Z
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 09720871
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1895
identifier_str_mv 09720871
url http://hdl.handle.net/20.500.12442/1895
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Pushpa Publishing House
dc.source.eng.fl_str_mv Revista Far East Journal of Mathematical Sciences (FJMS)
dc.source.none.fl_str_mv Vol. 101, No. 6 (2017)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://www.researchgate.net/profile/A_Sinitsyn/publication/305809139_A_model_of_anaerobic_digestion_for_biogas_production_using_Abel_equations/links/57a2a91308aeb1604835f5e2/A-model-of-anaerobic-digestion-for-biogas-production-using-Abel-equations.pdf
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/9d47ee91-cce0-4e72-8804-be1ba09e0ebf/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814076092175089664
spelling licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Acosta-Humánez, Primitivo B.9439add6-3451-4b3f-b187-8b8ba4133fcd-1Machado Higuera, Maximiliano4beccbb8-8422-4314-b701-7207a1114c41-1Sinitsyn, Alexander V.732aa30b-d289-49d3-9b0e-f1b8933ba8b2-12018-03-21T22:24:38Z2018-03-21T22:24:38Z201709720871http://hdl.handle.net/20.500.12442/1895Mathematical models for biogas production are studied due to their importance in the use of control and optimization of renewable resources and clean energy. In this paper, we combine two algebraic methods to obtain solutions of Abel equation of first kind that arises from a mathematical model to biogas production formulated in France on 2001. The aim of this paper is to obtain Liouvillian solutions of Abel’s equations through Hamiltonian algebrization. As an illustration, we present graphics of solutions for Abel equations and solutions for Abel equations in algebraic form.engPushpa Publishing HouseRevista Far East Journal of Mathematical Sciences (FJMS)Vol. 101, No. 6 (2017)https://www.researchgate.net/profile/A_Sinitsyn/publication/305809139_A_model_of_anaerobic_digestion_for_biogas_production_using_Abel_equations/links/57a2a91308aeb1604835f5e2/A-model-of-anaerobic-digestion-for-biogas-production-using-Abel-equations.pdfAbel equationBiogasDifferential equationsHamiltonian algebrizationLiouvillian solutionsA model of anaerobic digestion for biogas production using abel equationsarticlehttp://purl.org/coar/resource_type/c_6501P. B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics: The Integrability Analysis of the Schrödinger Equation by Means of Differential Galois Theory, VDM Verlag Dr. Müller, 2010, 128 pp.P. B. Acosta-Humánez, Nonautonomous Hamiltonian systems and Morales-Ramis theory I. The case ¨x = f (x, t), SIAM J. Appl. Dyn. Syst. 8 (2009), 279-297. DOI:10.1137/080730329.P. B. Acosta-Humánez, J. T. Lázaro, J. Morales-Ruiz and Ch. Pantazi, On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory, Discrete and Continuous Dynamical Systems - Series A (DCDS-A) 35 (2015), 1767-1800. http://dx.doi.org/10.3934/dcds.2015.35.1767.P. B. Acosta-Humánez, J. J. Morales-Ruiz and J.-A. Weil, Galoisian approach to integrability of Schrödinger equation, Rep. Math. Phys. 67 (2011), 305-374. DOI:10.1016/S0034-4877(11)60019-0.P. B. Acosta-Humánez and E. Suazo, Liouvillian propagators, Riccati equation and differential Galois theory, Journal of Physics A: Mathematical and Theoretical 46 (2013), 455203. DOI:10.1088/1751-8113/46/45/455203.B. Benyahia, T. Sari, B. Cherki and J. Harmand, Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, Journal of Process Control 22(6) (2012), 1008-1019. DOI:10.1016/j.jprocont.2012.04.012.O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi and J. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnology and Bioengineering 75(4) (2001), 424-438. DOI:10.1002/bit.10036.F. Mariet, O. Bernard, M. Ras, L. Lardon and J. Steyer, Modeling anaerobic digestion of microalgae using ADM1, Bioresource Technology 102(13) (2011), 6823-6829. DOI:10.1016/j.biortech.2011.04.015.M. Machado Higuera and A. V. Sinitsyn, Existence of lower and upper solutions in reverse order with respect to a variable in a model of acidogenesis to anaerobic digestion, Bulletin of the South Ural State University, Ser. Mathematical Modelling, Programming and Computer Software 8(2) (2015), 55-68. DOI:10.14529/mmp150205.E. Salinas, R. Muñoz, J. Sosa and B. López, Analysis to the solutions of Abel’s differential equations of the first kind under transformation y = u(x) z(x) + v(x), Appl. Math. Sci. 7(41-44) (2013), 2075-2092. DOI:10.12988/ams.B. Sialve, N. Bernet and O. Bernard, Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable, Biotechnology Advances 27(4) (2009), 409-416. DOI:10.1016/j.biotechadv.2009.03.001.M. Machado Higuera, Existencia de super y sub soluciones, estabilidad y bifurcación para un modelo matemático de digestión anaerobia para la producción de biogás, Thesis (Ph.D.), Universidad Veracruzana de México, Xalapa, 2015, 124 pp.LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/9d47ee91-cce0-4e72-8804-be1ba09e0ebf/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12442/1895oai:bonga.unisimon.edu.co:20.500.12442/18952019-04-11 21:51:32.63metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=