Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study

Background Adiponectin and leptin are pivotal in the regulation of metabolism. Pediatric lupus nephritis (pLN), a manifestation of childhood systemic lupus erythematosus (SLE) affecting the kidneys, is associated with impaired adipokine levels, suggesting a role in pLN pathogenesis. The aim of this...

Full description

Autores:
Garavito De Egea, Gloria
Domínguez‑Vargas, Alex
Fang, Luis
Pereira‑Sanandrés, Nicole
Rodríguez, Jonathan
Aroca‑Martinez, Gustavo
Espítatela, Zilac
Malagón, Clara
Iglesias‑Gamarra, Antonio
Moreno‑Woo, Ana
López‑Lluch, Guillermo
Egea, Eduardo
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/14374
Acceso en línea:
https://hdl.handle.net/20.500.12442/14374
https://doi.org/10.1186/s43042-024-00507-4
https://jmhg.springeropen.com/articles/10.1186/s43042-024-00507-4
Palabra clave:
Pediatric lupus nephritis
Adiponectin
Leptin
MTHFR
FGG
Polymorphism
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_06ef06d5e4b15f405066585d1200e8d4
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/14374
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study
title Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study
spellingShingle Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study
Pediatric lupus nephritis
Adiponectin
Leptin
MTHFR
FGG
Polymorphism
title_short Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study
title_full Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study
title_fullStr Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study
title_full_unstemmed Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study
title_sort Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study
dc.creator.fl_str_mv Garavito De Egea, Gloria
Domínguez‑Vargas, Alex
Fang, Luis
Pereira‑Sanandrés, Nicole
Rodríguez, Jonathan
Aroca‑Martinez, Gustavo
Espítatela, Zilac
Malagón, Clara
Iglesias‑Gamarra, Antonio
Moreno‑Woo, Ana
López‑Lluch, Guillermo
Egea, Eduardo
dc.contributor.author.none.fl_str_mv Garavito De Egea, Gloria
Domínguez‑Vargas, Alex
Fang, Luis
Pereira‑Sanandrés, Nicole
Rodríguez, Jonathan
Aroca‑Martinez, Gustavo
Espítatela, Zilac
Malagón, Clara
Iglesias‑Gamarra, Antonio
Moreno‑Woo, Ana
López‑Lluch, Guillermo
Egea, Eduardo
dc.subject.eng.fl_str_mv Pediatric lupus nephritis
Adiponectin
Leptin
MTHFR
FGG
Polymorphism
topic Pediatric lupus nephritis
Adiponectin
Leptin
MTHFR
FGG
Polymorphism
description Background Adiponectin and leptin are pivotal in the regulation of metabolism. Pediatric lupus nephritis (pLN), a manifestation of childhood systemic lupus erythematosus (SLE) affecting the kidneys, is associated with impaired adipokine levels, suggesting a role in pLN pathogenesis. The aim of this study was to explore the potential relationship between specific single-nucleotide polymorphisms (SNPs)—methylenetetrahydrofolate reductase (MTHFR) rs1801131 and fibrinogen gamma chain (FGG) rs2066865—and the serum levels of leptin and adiponectin in patients with pLN. Methods Ninety-eight pLN patients and one hundred controls were enrolled in the study. Serum leptin and adiponectin levels were measured using ELISA. DNA extraction and real-time PCR genotyping were performed for MTHFR rs1801131 and FGG rs2066865 SNPs. Results Compared to healthy controls, pLN patients exhibited significantly greater serum leptin (11.3 vs. 18.2 ng/ mL, p < 0.001) and adiponectin (18.2 vs. 2.7 ug/mL, p < 0.001). Adiponectin levels were positively correlated with proteinuria (p < 0.05), while leptin levels positively correlated with proteinuria, SLE disease activity index-2000 (SLEDAI-2K), and cyclophosphamide usage (all p < 0.05). There was no significant association between MTHFR rs1801131 or FGG rs2066865 SNPs and pLN in either codominant or allelic models (all p > 0.05). However, the AG genotype of FGG gene rs2066865 SNP was significantly associated with high leptin levels (> 15 ng/mL) (p = 0.01). Conclusion Serum adiponectin and leptin levels are associated with pathological manifestations of pLN. High leptin levels are associated with the AG genotype of FGG rs2066865 SNP in pLN patients, suggesting direct involvement in disease progression and potential utility as a disease biomarker.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-03-15T20:31:19Z
dc.date.available.none.fl_str_mv 2024-03-15T20:31:19Z
dc.date.issued.none.fl_str_mv 2024
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.citation.eng.fl_str_mv De Egea, G.G., Domínguez-Vargas, A., Fang, L. et al. Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study. Egypt J Med Hum Genet 25, 34 (2024). https://doi.org/10.1186/s43042-024-00507-4
dc.identifier.issn.none.fl_str_mv 20902441 (electrónico)
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/14374
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1186/s43042-024-00507-4
dc.identifier.url.none.fl_str_mv https://jmhg.springeropen.com/articles/10.1186/s43042-024-00507-4
identifier_str_mv De Egea, G.G., Domínguez-Vargas, A., Fang, L. et al. Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study. Egypt J Med Hum Genet 25, 34 (2024). https://doi.org/10.1186/s43042-024-00507-4
20902441 (electrónico)
url https://hdl.handle.net/20.500.12442/14374
https://doi.org/10.1186/s43042-024-00507-4
https://jmhg.springeropen.com/articles/10.1186/s43042-024-00507-4
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv Springer Nature
dc.source.eng.fl_str_mv Egyptian Journal of Medical Human Genetics
dc.source.none.fl_str_mv Vol. 25 N° 34, (2024)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/670e979b-9d46-458f-8c17-b0c716a63d1d/download
https://bonga.unisimon.edu.co/bitstreams/e12975f2-cc35-4fc5-8b22-2d13642863e8/download
https://bonga.unisimon.edu.co/bitstreams/6e226a18-f6ff-4f43-8d73-e745dbe9a68b/download
https://bonga.unisimon.edu.co/bitstreams/2384acdc-9950-499e-8d7c-3102d2bb382a/download
https://bonga.unisimon.edu.co/bitstreams/932d61c7-5b99-4c1a-9baf-d462d921dc97/download
https://bonga.unisimon.edu.co/bitstreams/91449ed8-8c28-4137-b48a-85e40d7b127c/download
https://bonga.unisimon.edu.co/bitstreams/885c2407-7da7-4423-9d1e-0f134430ca70/download
bitstream.checksum.fl_str_mv 2406b1970031892d26d71032ad1d55ea
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
5e526e0cc52ab32bc1859aa36e6bcac5
5e526e0cc52ab32bc1859aa36e6bcac5
2eac320ed256aba502a87745ffc5493b
2eac320ed256aba502a87745ffc5493b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100490019733504
spelling Garavito De Egea, Gloria34fc0524-219a-4a6e-9228-1d16b3fd9729Domínguez‑Vargas, Alex0da310b3-e1d1-48bc-bbcc-6a05320b6269Fang, Luis3961d770-1b6f-4b7f-8d1f-0697a762197bPereira‑Sanandrés, Nicole7fd1c71b-9187-4f25-bd94-312ab6d179ccRodríguez, Jonathaned5e074c-037e-498e-883c-1d85d785336dAroca‑Martinez, Gustavo8af8cd86-1c1c-4521-a728-2cd6e7b33274Espítatela, Zilacbcafc965-ff4f-4189-8e59-d71690ccc0baMalagón, Clarad06dc5ae-3c16-499b-a6f7-d98262f14f76Iglesias‑Gamarra, Antoniof70483bb-4ced-47b5-8f5d-17ffba211bd1Moreno‑Woo, Anac59070d0-aa51-486e-9ba9-41b3b2198249López‑Lluch, Guillermo9c5e2442-2ba7-4415-b071-5239459308c3Egea, Eduardo4f89b318-81b2-4eff-af87-ea8302a1d8672024-03-15T20:31:19Z2024-03-15T20:31:19Z2024De Egea, G.G., Domínguez-Vargas, A., Fang, L. et al. Exploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot study. Egypt J Med Hum Genet 25, 34 (2024). https://doi.org/10.1186/s43042-024-00507-420902441 (electrónico)https://hdl.handle.net/20.500.12442/14374https://doi.org/10.1186/s43042-024-00507-4https://jmhg.springeropen.com/articles/10.1186/s43042-024-00507-4Background Adiponectin and leptin are pivotal in the regulation of metabolism. Pediatric lupus nephritis (pLN), a manifestation of childhood systemic lupus erythematosus (SLE) affecting the kidneys, is associated with impaired adipokine levels, suggesting a role in pLN pathogenesis. The aim of this study was to explore the potential relationship between specific single-nucleotide polymorphisms (SNPs)—methylenetetrahydrofolate reductase (MTHFR) rs1801131 and fibrinogen gamma chain (FGG) rs2066865—and the serum levels of leptin and adiponectin in patients with pLN. Methods Ninety-eight pLN patients and one hundred controls were enrolled in the study. Serum leptin and adiponectin levels were measured using ELISA. DNA extraction and real-time PCR genotyping were performed for MTHFR rs1801131 and FGG rs2066865 SNPs. Results Compared to healthy controls, pLN patients exhibited significantly greater serum leptin (11.3 vs. 18.2 ng/ mL, p < 0.001) and adiponectin (18.2 vs. 2.7 ug/mL, p < 0.001). Adiponectin levels were positively correlated with proteinuria (p < 0.05), while leptin levels positively correlated with proteinuria, SLE disease activity index-2000 (SLEDAI-2K), and cyclophosphamide usage (all p < 0.05). There was no significant association between MTHFR rs1801131 or FGG rs2066865 SNPs and pLN in either codominant or allelic models (all p > 0.05). However, the AG genotype of FGG gene rs2066865 SNP was significantly associated with high leptin levels (> 15 ng/mL) (p = 0.01). Conclusion Serum adiponectin and leptin levels are associated with pathological manifestations of pLN. High leptin levels are associated with the AG genotype of FGG rs2066865 SNP in pLN patients, suggesting direct involvement in disease progression and potential utility as a disease biomarker.pdfengSpringer NatureAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Egyptian Journal of Medical Human GeneticsVol. 25 N° 34, (2024)Pediatric lupus nephritisAdiponectinLeptinMTHFRFGGPolymorphismExploring the interplay of MTHFR and FGG polymorphisms with serum levels of adiponectin and leptin in pediatric lupus nephritis: a pilot studyinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC (2017) Pathogenesis of human systemic lupus erythematosus: a cellular perspective. Trends Mol Med 23(7):615–635. https://doi.org/10.1016/j.molmed.2017.05.006Valdivielso JM, Rodríguez-Puyol D, Pascual J et al (2019) Atherosclerosis in chronic kidney disease. Arterioscler Thromb Vasc Biol 39(10):1938–1966. https://doi.org/10.1161/ATVBAHA.119.312705Selzer F, Sutton-Tyrrell K, Fitzgerald SG et al (2004) Comparison of risk factors for vascular disease in the carotid artery and aorta in women with systemic lupus erythematosus. Arthritis Rheum 50(1):151–159. https://doi.org/10.1002/art.11418Bruce IN, Urowitz MB, Gladman DD, Ibañez D, Steiner G (2003) Risk factors for coronary heart disease in women with systemic lupus erythematosus: the Toronto risk factor study. Arthritis Rheum 48(11):3159–3167. https://doi.org/10.1002/art.11296Doria A (2003) Risk factors for subclinical atherosclerosis in a prospective cohort of patients with systemic lupus erythematosus. Ann Rheum Dis 62(11):1071–1077. https://doi.org/10.1136/ard.62.11.1071Sozeri B, Deveci M, Dincel N, Mir S (2013) The early cardiovascular changes in pediatric patients with systemic lupus erythematosus. Pediatr Nephrol 28(3):471–476. https://doi.org/10.1007/s00467-012-2342-2de Souza Barbosa V, Francescantônio PL, da Silva NA (2015) Leptin and adiponectin in patients with systemic lupus erythematosus: clinical and laboratory correlations. Rev Bras Reumatol (Engl Ed) 55(2):140–145. https://doi.org/10.1016/j.rbre.2014.08.013Zhang TP, Li HM, Leng RX et al (2016) Plasma levels of adipokines in systemic lupus erythematosus patients. Cytokine 86:15–20. https://doi.org/10.1016/j.cyto.2016.07.008Giannelou M, Nezos A, Fragkioudaki S et al (2018) Contribution of MTHFR gene variants in lupus related subclinical atherosclerosis. Clin Immunol 193:110–117. https://doi.org/10.1016/j.clim.2018.02.014Li HM, Zhang TP, Leng RX et al (2016) Emerging role of adipokines in systemic lupus erythematosus. Immunol Res 64(4):820–830. https://doi.org/10.1007/s12026-016-8808-8Petri M, Roubenoff R, Dallal GE, Nadeau MR, Selhub J, Rosenberg IH (1996) Plasma homocysteine as a risk factor for atherothrombotic events in systemic lupus erythematosus. Lancet 348(9035):1120–1124. https://doi.org/10.1016/S0140-6736(96)03032-2Santilli F, Davì G, Patrono C (2016) Homocysteine, methylenetetrahydrofolate reductase, folate status and atherothrombosis: a mechanistic and clinical perspective. Vascul Pharmacol 78:1–9. https://doi.org/10.1016/j.vph.2015.06.009Zhou HY, Yuan M (2020) MTHFR polymorphisms (rs1801133) and systemic lupus erythematosus risk: a meta-analysis. Medicine 99(40):E22614. https://doi.org/10.1097/MD.0000000000022614Dias S, Adam S, Rheeder P, Pheiffer C (2021) No association between ADIPOQ or MTHFR polymorphisms and gestational diabetes mellitus in South African women. Diabetes Metab Syndr Obes 14:791–800. https://doi.org/10.2147/DMSO.S294328Luo Z, Lu Z, Muhammad I et al (2018) Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids Health Dis 17(1):191. https://doi.org/10.1186/s12944-018-0837-yKaiser R, Li Y, Chang M et al (2012) Genetic risk factors for thrombosis in systemic lupus erythematosus. J Rheumatol 39(8):1603–1610. https://doi.org/10.3899/jrheum.111451Uitte De Willige S, Rietveld IM, Visser Mch De, Vos HL, Bertina RM (2007) Polymorphism 10034C>T is located in a region regulating polyadenylation of FGG transcripts and influences the fibrinogen γ′/γA mRNA ratio. J Thromb Haemost 5(6):1243–1249. https://doi.org/10.1111/j.1538-7836.2007.02566.xDrizlionoka K, Zariņš J, Ozoliņa A, Ņikitina-Zaķe L, Mamaja B (2019) Polymorphism rs2066865 in the fibrinogen gamma chain (FGG) gene increases plasma fibrinogen concentration and is associated with an increased microvascular thrombosis rate. Medicina. https://doi.org/10.3390/medicina55090563Ozgokce C, Elci E, Yildizhan R (2020) C-reactive protein, fibrinogen, leptin, and adiponectin levels in women with polycystic ovary syndrome. J Obstet Gynecol India 70(6):490–496. https://doi.org/10.1007/s13224-020-01331-7Hahn BH, McMahon MA, Wilkinson A et al (2012) American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res 64(6):797–808. https://doi.org/10.1002/acr.21664Ruiz Irastorza G, Espinosa G, Frutos MA et al (2012) Diagnosis and treatment of lupus nephritis consensus document from the systemic auto-immune disease group (GEAS) of the Spanish Society of Internal Medicine (SEMI) and Spanish Society of Nephrology (SEN). Nefrologia 32(Suppl 1):1–35. https://doi.org/10.3265/Nefrologia.pre2011.Dec.11298Simón E, Del Barrio AS (2002) Leptina y obesidad. An Sist Sanit Navar 25(SUPPL. 1):53–64Chandran M, Phillips SA, Ciaraldi T, Henry RR (2003) Adiponectin: More than just another fat cell hormone? Diabetes Care 26(8):2442–2450. https://doi.org/10.2337/diacare.26.8.2442Abella V, Scotece M, Conde J et al (2017) Leptin in the interplay of inflammation, metabolism and immune system disorders. Nat Rev Rheumatol 13(2):100–109. https://doi.org/10.1038/nrrheum.2016.209Almaani S, Meara A, Rovin BH (2017) Update on lupus nephritis. Clin J Am Soc Nephrol 12(5):825–835. https://doi.org/10.2215/CJN.05780616Schwartzman-Morris J, Putterman C (2012) Gender differences in the pathogenesis and outcome of lupus and of lupus nephritis. Clin Dev Immunol 2012:604892. https://doi.org/10.1155/2012/604892Smekal A, Vaclavik J (2017) Adipokines and cardiovascular disease: a comprehensive review. Biomed Pap 161(1):31–40. https://doi.org/10.5507/bp.2017.002Freitas Lima LC, Braga VDA, do Socorro de França Silva M et al (2015) Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol. https://doi.org/10.3389/fphys.2015.00304Abulaban KM, Brunner HI (2015) Biomarkers for childhood-onset systemic lupus erythematosus. Curr Rheumatol Rep 17(1):471. https://doi.org/10.1007/s11926-014-0471-2Barbosa VD, Francescantônio PL, Silva NA (2015) Leptina e adiponectina no lúpus eritematoso sistêmico: correlações clínicas e laboratoriais. Rev Bras Reumatol 55(2):140–145. https://doi.org/10.1016/j.rbr.2014.08.014Fantuzzi G (2008) Adiponectin and inflammation: consensus and controversy. J Allergy Clin Immunol 121(2):326–330. https://doi.org/10.1016/j.jaci.2007.10.018Sada KE, Yamasaki Y, Maruyama M et al (2006) Altered levels of adipocytokines in association with insulin resistance in patients with systemic lupus erythematosus. J Rheumatol 33(8):1545–1552Toussirot É, Gaugler B, Bouhaddi M, Nguyen NU, Saas P, Dumoulin G (2010) Elevated adiponectin serum levels in women with systemic autoimmune diseases. Mediat Inflamm 2010:1–6. https://doi.org/10.1155/2010/938408Hutcheson J, Ye Y, Han J et al (2015) Resistin as a potential marker of renal disease in lupus nephritis. Clin Exp Immunol 179(3):435–443. https://doi.org/10.1111/cei.12473Fujita H, Morii T, Koshimura J et al (2006) Possible relationship between adiponectin and renal tubular injury in diabetic nephropathy. Endocr J 53(6):745–752. https://doi.org/10.1507/endocrj.K06-016Tsioufis C, Dimitriadis K, Chatzis D et al (2005) Relation of microalbuminuria to adiponectin and augmented C-reactive protein levels in men with essential hypertension. Am J Cardiol 96(7):946–951. https://doi.org/10.1016/j.amjcard.2005.05.052Rovin BH, Song H, Hebert LA et al (2005) Plasma, urine, and renal expression of adiponectin in human systemic lupus erythematosus. Kidney Int 68(4):1825–1833. https://doi.org/10.1111/j.1523-1755.2005.00601.xKamel SM, Abdel Azeem ME, Mohamed RA, Kamel MM, Abdel Aleem EA (2023) High serum leptin and adiponectin levels as biomarkers of disease progression in Egyptian patients with active systemic lupus erythematosus. Int J Immunopathol Pharmacol 37:3946320231154988. https://doi.org/10.1177/03946320231154988Reagan M, Salim NA, Junaidi, Hermansyah (2019) Comparison of leptin serum levels between systemic lupus erythematosus (SLE) and non-SLE patients at Mohammad Hoesin Hospital Palembang. J Phys Conf Ser 1246(1):012046. https://doi.org/10.1088/1742-6596/1246/1/012046Wisłowska M, Rok M, Stępień K, Kuklo-Kowalska A (2008) Serum leptin in systemic lupus erythematosus. Rheumatol Int 28(5):467–473. https://doi.org/10.1007/s00296-008-0526-7Lee YH, Song GG (2018) Association between circulating leptin levels and systemic lupus erythematosus: an updated meta-analysis. Lupus 27(3):428–435. https://doi.org/10.1177/0961203317725587McMahon M, Skaggs BJ, Sahakian L et al (2011) High plasma leptin levels confer increased risk of atherosclerosis in women with systemic lupus erythematosus, and are associated with inflammatory oxidised lipids. Ann Rheum Dis 70(9):1619–1624. https://doi.org/10.1136/ard.2010.142737Vadacca M, Zardi EM, Margiotta D et al (2013) Leptin, adiponectin and vascular stiffness parameters in women with systemic lupus erythematosus. Intern Emerg Med 8(8):705–712. https://doi.org/10.1007/s11739-011-0726-0Tam LS, Fan B, Li EK et al (2003) Patients with systemic lupus erythematosus show increased platelet activation and endothelial dysfunction induced by acute hyperhomocysteinemia. J Rheumatol 30(7):1479–1484Salimi S, Keshavarzi F, Mohammadpour-Gharehbagh A et al (2017) Polymorphisms of the folate metabolizing enzymes: association with SLE susceptibility and in silico analysis. Gene 637:161–172. https://doi.org/10.1016/j.gene.2017.09.037Ossa H, Aquino J, Pereira R et al (2016) Outlining the ancestry landscape of colombian admixed populations. PLoS ONE 11(10):e0164414. https://doi.org/10.1371/journal.pone.0164414Von Feldt JM, Scalzi LV, Cucchiara AJ et al (2006) Homocysteine levels and disease duration independently correlate with coronary artery calcification in patients with systemic lupus erythematosus. Arthritis Rheum 54(7):2220–2227. https://doi.org/10.1002/art.21967Rua-Figueroa I, Arencibia-Mireles O, Elvira M et al (2010) Factors involved in the progress of preclinical atherosclerosis associated with systemic lupus erythematosus: a 2-year longitudinal study. Ann Rheum Dis 69(6):1136–1139. https://doi.org/10.1136/ard.2008.104349Pinto Peñaranda LF, Castro Mercado IL, Duque Caballero V, Márquez Hernández JD, Velásquez Franco CJ (2014) Factores de riesgo predictores de falla a la terapia de inducción de nefritis lúpica en una cohorte de pacientes colombianos. Reumatol Clínica 10(3):147–151. https://doi.org/10.1016/j.reuma.2013.09.005ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1069577https://bonga.unisimon.edu.co/bitstreams/670e979b-9d46-458f-8c17-b0c716a63d1d/download2406b1970031892d26d71032ad1d55eaMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/e12975f2-cc35-4fc5-8b22-2d13642863e8/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/6e226a18-f6ff-4f43-8d73-e745dbe9a68b/download733bec43a0bf5ade4d97db708e29b185MD53TEXTExploring the interplay of MTHFR.pdf.txtExploring the interplay of MTHFR.pdf.txtExtracted texttext/plain50031https://bonga.unisimon.edu.co/bitstreams/2384acdc-9950-499e-8d7c-3102d2bb382a/download5e526e0cc52ab32bc1859aa36e6bcac5MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain50031https://bonga.unisimon.edu.co/bitstreams/932d61c7-5b99-4c1a-9baf-d462d921dc97/download5e526e0cc52ab32bc1859aa36e6bcac5MD56THUMBNAILExploring the interplay of MTHFR.pdf.jpgExploring the interplay of MTHFR.pdf.jpgGenerated Thumbnailimage/jpeg5261https://bonga.unisimon.edu.co/bitstreams/91449ed8-8c28-4137-b48a-85e40d7b127c/download2eac320ed256aba502a87745ffc5493bMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5261https://bonga.unisimon.edu.co/bitstreams/885c2407-7da7-4423-9d1e-0f134430ca70/download2eac320ed256aba502a87745ffc5493bMD5720.500.12442/14374oai:bonga.unisimon.edu.co:20.500.12442/143742024-08-14 21:53:06.042http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u