Dynamics of population immunity due to the herd Effect in the COVID-19 pandemic

The novel Coronavirus 2 Severe Acute Respiratory Syndrome (SARS-Cov-2) has led to the Coronavirus Disease 2019 (COVID-19) pandemic, which has surprised health authorities around the world, quickly producing a global health crisis. Different actions to cope with this situation are being developed, in...

Full description

Autores:
Clemente-Suárez, Vicente Javier
Hormeño-Holgado, Alberto
Jiménez, Manuel
Benitez-Agudelo, Juan Camilo
Navarro-Jiménez, Eduardo
Perez-Palencia, Natalia
Maestre-Serrano, Ronald
Laborde-Cárdenas, Carmen Cecilia
Tornero-Aguilera, Jose Francisco
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/5710
Acceso en línea:
https://hdl.handle.net/20.500.12442/5710
https://doi.org/10.3390/vaccines8020236
Palabra clave:
SARS-Cov-2
COVID-19
Herd immunology
Vaccines
Pandemic
Epidemiology
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_05b56f0d787f3ee4a5e4a331bed414de
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/5710
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Dynamics of population immunity due to the herd Effect in the COVID-19 pandemic
title Dynamics of population immunity due to the herd Effect in the COVID-19 pandemic
spellingShingle Dynamics of population immunity due to the herd Effect in the COVID-19 pandemic
SARS-Cov-2
COVID-19
Herd immunology
Vaccines
Pandemic
Epidemiology
title_short Dynamics of population immunity due to the herd Effect in the COVID-19 pandemic
title_full Dynamics of population immunity due to the herd Effect in the COVID-19 pandemic
title_fullStr Dynamics of population immunity due to the herd Effect in the COVID-19 pandemic
title_full_unstemmed Dynamics of population immunity due to the herd Effect in the COVID-19 pandemic
title_sort Dynamics of population immunity due to the herd Effect in the COVID-19 pandemic
dc.creator.fl_str_mv Clemente-Suárez, Vicente Javier
Hormeño-Holgado, Alberto
Jiménez, Manuel
Benitez-Agudelo, Juan Camilo
Navarro-Jiménez, Eduardo
Perez-Palencia, Natalia
Maestre-Serrano, Ronald
Laborde-Cárdenas, Carmen Cecilia
Tornero-Aguilera, Jose Francisco
dc.contributor.author.none.fl_str_mv Clemente-Suárez, Vicente Javier
Hormeño-Holgado, Alberto
Jiménez, Manuel
Benitez-Agudelo, Juan Camilo
Navarro-Jiménez, Eduardo
Perez-Palencia, Natalia
Maestre-Serrano, Ronald
Laborde-Cárdenas, Carmen Cecilia
Tornero-Aguilera, Jose Francisco
dc.subject.eng.fl_str_mv SARS-Cov-2
COVID-19
Herd immunology
Vaccines
Pandemic
Epidemiology
topic SARS-Cov-2
COVID-19
Herd immunology
Vaccines
Pandemic
Epidemiology
description The novel Coronavirus 2 Severe Acute Respiratory Syndrome (SARS-Cov-2) has led to the Coronavirus Disease 2019 (COVID-19) pandemic, which has surprised health authorities around the world, quickly producing a global health crisis. Different actions to cope with this situation are being developed, including confinement, different treatments to improve symptoms, and the creation of the first vaccines. In epidemiology, herd immunity is presented as an area that could also solve this new global threat. In this review, we present the basis of herd immunology, the dynamics of infection transmission that induces specific immunity, and how the application of immunoepidemiology and herd immunology could be used to control the actual COVID-19 pandemic, along with a discussion of its effectiveness, limitations, and applications.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-05-21T20:24:14Z
dc.date.available.none.fl_str_mv 2020-05-21T20:24:14Z
dc.date.issued.none.fl_str_mv 2020
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.eng.fl_str_mv article
dc.identifier.issn.none.fl_str_mv 2076393X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/5710
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/vaccines8020236
identifier_str_mv 2076393X
url https://hdl.handle.net/20.500.12442/5710
https://doi.org/10.3390/vaccines8020236
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv MDPI
dc.source.eng.fl_str_mv Revista Vaccines
dc.source.none.fl_str_mv Vol. 8, Issue 2 (2020)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/4bb6b066-5531-4318-839f-fc56857eb62b/download
https://bonga.unisimon.edu.co/bitstreams/7414426c-e574-4931-b43c-0603d7d0732f/download
https://bonga.unisimon.edu.co/bitstreams/863fcefc-1747-4ac4-a705-6ca5b520ee09/download
https://bonga.unisimon.edu.co/bitstreams/f589e90c-4ffd-42eb-b833-fe7c4ee7e088/download
https://bonga.unisimon.edu.co/bitstreams/fb8fa755-37fa-4942-b62e-525a4fab92b0/download
https://bonga.unisimon.edu.co/bitstreams/0cdec092-b6f6-4747-908a-e358443a3108/download
https://bonga.unisimon.edu.co/bitstreams/ebf5e52f-c89c-4fef-aba6-f1b1af4c1b7e/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
a88b720e70d03c8c4a2c6678e21b4882
cd81c58b6954db78ec568d597ef98089
936c61723520cc1da7bcafa44da249ee
2a080e165d15848ca31cd3cf7fe8e65f
4efe87d2d8049f3c38e8a066d9d66f8c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100526983086080
spelling Clemente-Suárez, Vicente Javier3ea4e772-dedc-40f7-ab63-351bbb71543cHormeño-Holgado, Alberto3d86f2b9-7601-447b-bfac-8e2457c63a37Jiménez, Manuel87d14eee-a3a1-4818-b49d-588a0884b0a2Benitez-Agudelo, Juan Camilo0fada869-0796-412f-bb29-c2480864201dNavarro-Jiménez, Eduardo0fcefc20-f73a-43a6-9eab-6c9c668cabb9Perez-Palencia, Nataliaddafa960-bff9-4c16-834c-594c12b7ace1Maestre-Serrano, Ronald40ba2456-d23d-4a6d-8d98-e4dbf3fefc19Laborde-Cárdenas, Carmen Cecilia98513e66-256b-4e8c-a6b1-82470eefb9a4Tornero-Aguilera, Jose Francisco560eede2-537b-4bfa-abba-2a2061fa23302020-05-21T20:24:14Z2020-05-21T20:24:14Z20202076393Xhttps://hdl.handle.net/20.500.12442/5710https://doi.org/10.3390/vaccines8020236The novel Coronavirus 2 Severe Acute Respiratory Syndrome (SARS-Cov-2) has led to the Coronavirus Disease 2019 (COVID-19) pandemic, which has surprised health authorities around the world, quickly producing a global health crisis. Different actions to cope with this situation are being developed, including confinement, different treatments to improve symptoms, and the creation of the first vaccines. In epidemiology, herd immunity is presented as an area that could also solve this new global threat. In this review, we present the basis of herd immunology, the dynamics of infection transmission that induces specific immunity, and how the application of immunoepidemiology and herd immunology could be used to control the actual COVID-19 pandemic, along with a discussion of its effectiveness, limitations, and applications.pdfengMDPIAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Revista VaccinesVol. 8, Issue 2 (2020)SARS-Cov-2COVID-19Herd immunologyVaccinesPandemicEpidemiologyDynamics of population immunity due to the herd Effect in the COVID-19 pandemicarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Topley, W.W.C.; Wilson, G.S. The spread of bacterial infection. The problem of herd-immunity. Epidemiol. Infect. 1923, 21, 243–249.Fine, P.E. Herd immunity: History, theory, practice. Epidemiol. Rev. 1993, 15, 265–302.Fine, P.; Eames, K.; Heymann, D.L. “Herd immunity”: A rough guide. Clin. Infect. Dis. 2011, 52, 911–916.Rashid, H.; Khandaker, G.; Booy, R. Vaccination and herd immunity: What more do we know? Curr. Opin. Infect Dis. 2012, 25, 243–249.Smith, D.R. Herd Immunity. Vet. Clin. Pract. 2019, 35, 593–604.Goncalves, G. Herd immunity: Recent uses in vaccine assessment. Expert Rev. Vaccines 2008, 7, 1493–1506.Korppi, M. Universal pneumococcal vaccination provides marked indirect beneficial effects through herd immunity. Acta Paediatr. 2018, 107, 1488–1489.Nymark, L.S.; Sharma, T.; Miller, A.; Enemark, U.; Griffiths, U.K. Inclusion of the value of herd immunity in economic evaluations of vaccines. A systematic review of methods used. Vaccine 2017, 35, 6828–6841.Ali, M.; Emch, M.; Von Seidlein, L.; Yunus, M.; Sack, D.A.; Rao, M.; Holmgren, J.; Clemens, J.D. Herd immunity conferred by killed oral cholera vaccines in Bangladesh: A reanalysis. Lancet 2005, 366, 44–49.Kinoshita, R.; Nishiura, H. Assessing herd immunity against rubella in Japan: A retrospective seroepidemiological analysis of age-dependent transmission dynamics. BMJ Open 2016, 6, doi:10.1136/bmjopen-2015-009928Smith, D.; Huynh, C.; Moore, A.J.; Frick, A.; Anderson, C.; Porrachia, M.; Scott, B.; Stous, S.; Schooley, R.; Little, S.; et al. Herd Immunity Likely Protected the Men Who Have Sex With Men in the Recent Hepatitis A Outbreak in San Diego, California. Clin. Infect. Dis. 2019, 68, 1228–1230.Maver, P.J.; Poljak, M. Progress in prophylactic human papillomavirus (HPV) vaccination in 2016: A literature review. Vaccine 2018, 36, 5416–5423.LeBlanc, J.J.; ElSherif, M.; Ye, L.; MacKinnon-Cameron, D.; Ambrose, A.; Hatchette, T.F.; Lang, A.L.S.; Gillis, H.D.; Martin, I.; Demczuk, W.; et al. Streptococcus pneumoniae serotype 3 is masking PCV13-mediated herd immunity in Canadian adults hospitalized with community acquired pneumonia: A study from the Serious Outcomes Surveillance (SOS) Network of the Canadian immunization research Network (CIRN). Vaccine 2019, 37, 5466–5473.Payne, P.; Geyrhofer, L.; Barton, N.H.; Bollback, J.P. CRISPR-based herd immunity can limit phage epidemics in bacterial populations. eLife 2018, 7, e32035.Albuquerque, I.G.C.D.; Marandino, R.; Mendonça, A.P.; Nogueira, R.M.R.; Vasconcelos, P.F.D.C.; Guerra, L.R.; Brandão, B.C.; Mendonça, A.P.; Aguiar, G.R.; Bacco, P.A. Chikungunya virus infection: Report of the first case diagnosed in Rio de Janeiro, Brazil. Rev. Soc. Bras. Med. Trop. 2012, 45, 128–129.Kwok, K.O.; Lai, F.; Wei, W.I.; Wong, S.Y.S.; Tang, J.W. Herd immunity–estimating the level required to halt the COVID-19 epidemics in affected countries. J. Infect. 2020, 80, e32–e33Fox, J.P.; Elveback, L.; Scott, W.; Gatewood, L.; Ackerman, E. Herd immunity: Basic concept and relevance to public health immunization practices. Am. J. Epidemiol. 1971, 94, 179–189.Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 2020, 87(4), doi:10.1007/s12098-020-03263-6Peng, X.; Xu, X.; Li, Y.; Cheng, L.; Zhou, X.; Ren, B. Transmission routes of 2019-nCoV and controls in dental practice. Int. J. Oral Sci. 2020, 12, 9.Yeo, C.; Kaushal, S.; Yeo, D. Enteric involvement of coronaviruses: Is faecal–oral transmission of SARSCoV- 2 possible? Lancet Gastroenterol. Hepatol. 2020, 5, 335–337.Qiao, J. What are the risks of COVID-19 infection in pregnant women? Lancet 2020, 395, 760–762.Zhou, G.; Zhao, Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int. J. Biol. Sci. 2020, 16, 1718.Xun, J.; Lu, L.; Jiang, S.; Lu, H.; Wen, Y.; Huang, J. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered 2 patient cohort and their implications. Medrxiv 2020, doi:10.1101/2020.03.30.20047365Wu, Y.; Guo, C.; Tang, L.; Hong, Z.; Zhou, J.; Dong, X.; Yin, H.; Xiao, Q.; Tang, Y.; Qu, X.; et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020, 5, 434–435.Wu, J.T.; Leung, K.; Bushman, M.; Kishore, N.; Niehus, R.; de Salazar, P.M.; Cowling, B.J.; Lipsitch, M.; Leung, G.M. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020, 26, 506–510.Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513.Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020, 25, 2000180Benvenuto, D.; Giovanetti, M.; Vassallo, L.; Angeletti, S.; Ciccozzi, M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data Brief 2020, 29, 105340.Read, J.M.; Bridgen, J.R.; Cummings, D.A.; Ho, A.; Jewell, C.P. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions. Medrxiv 2020, doi:10.1101/2020.01.23.20018549Wang, H.; Wang, Z.; Dong, Y.; Chang, R.; Xu, C.; Yu, X.; Zhang, S.; Tsamlag, L.; Shang, M.; Huang, J.; et al. Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China. Cell Discov. 2020, 6, 10.Tang, B.; Bragazzi, N.L.; Li, Q.; Tang, S.; Xiao, Y.; Wu, J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect. Dis. Model. 2020, 5, 248–255.Chen, T.M.; Rui, J.; Wang, Q.P.; Zhao, Z.Y.; Cui, J.A.; Yin, L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect. Dis. Poverty 2020, 9, 24.Liu, Y.; Gayle, A.A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med. 2020, 27, taaa021Randolph, H.E.; Barreiro, L.B. Herd Immunity: Understanding COVID-19. Cell Press 2020 doi:10.1016/j.immuni.2020.04.012Shim, E.; Tariq, A.; Choi, W.; Lee, Y.; Chowell, G. Transmission potential and severity of COVID-19 in South Korea. Int. J. Infect. Dis. 2020, 93, 339–344.Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty 2020, 9, 29.Shang, W.; Yang, Y.; Rao, Y.; Rao, X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. npj Vaccines 2020, 5, 18.Surveillances, V. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020. China CDC Wkly 2020, 2, 113–122.WHO Characterizes COVID-19 as a Pandemic. 2020. Available online: https://www.paho.org/hq/index.php?option=com_content&view=article&id=15756&Itemid=39630&lang= en (accessed on 15/05/2020).Foddai, A.; Lindberg, A.; Lubroth, J.; Ellis-Iversen, J. Surveillance to improve evidence for community control decisions during the COVID-19 pandemic–opening the animal epidemic toolbox for public health. One Health 2020, 9, 100130de Lusignan, S.; Bernal, J.L.; Zambon, M.; Akinyemi, O.; Amirthalingam, G.; Andrews, N.; Borrow, R.; Byford, R.; Charlett, A.; Dabrera, G.; et al. Emergence of a novel coronavirus (COVID-19): Protocol for extending surveillance used by the Royal College of general practitioners research and surveillance centre and public health England. JMIR Public Health Surveill. 2020, 6, e18606.Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242Tufan, Z.K.; Kayaaslan, B. Crushing the curve, the role of national and international institutions and policy makers in COVID-19 pandemic. Turk. J. Med. Sci. 2020, 50, 495–508.Fang, Y.; Zhang, H.; Xie, J.; Lin, M.; Ying, L.; Pang, P.; Ji, W. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology 2020, 200432, doi:10.1148/radiol.2020200432Li, W.; Yang, Y.; Liu, Z.H.; Zhao, Y.J.; Zhang, Q.; Zhang, L.; Cheung, T.; Xiang, Y.-T. Progression of Mental Health Services during the COVID-19 Outbreak in China. Int. J. Biol. Sci. 2020, 16, 1732–1738.World Health Organization. Operational Considerations for COVID-19 Surveillance Using GISRS: Interim Guidance, 26 March 2020 (No. WHO/2019-nCoV/Leveraging_GISRS/2020.1); World Health Organization: Geneva, Switzerland, 2020.Srivastava, N.; Baxi, P.; Ratho, R.K.; Saxena, S.K. Global Trends in Epidemiology of Coronavirus Disease 2019 (COVID-19). In Coronavirus Disease 2019 (COVID-19); Springer: Singapore, 2020, doi: 10.1007/978-981- 15-4814-7_2.Peng, F.; Tu, L.; Yang, Y.; Hu, P.; Wang, R.; Hu, Q.; Cao, F.; Jiang, T.; Sun, J.; Xu, G.; et al. Management and Treatment of COVID-19: The Chinese Experience. Can. J. Cardiol. 2020, doi:10.1016/j.cjca.2020.04.010Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct. Radiology 2020, 200905.Biswas, M.H.A.; Paiva, L.T.; De Pinho, M.D.R. A SEIR model for control of infectious diseases with constraints. Math. Biosci. Eng. 2014, 11, 761–784.Herrmann, H.A.; Schwartz, J.M. Using network science to propose strategies for effectively dealing with pandemics: The COVID-19 example. medRxiv 2020, doi:10.1101/2020.04.02.20050468Fresnadillo-Martínez, M.J.; Garcia-Sanchez, E.; Garcia-Merino, E.; García-Sánchez, J.E. Mathematical modelling of the propagation of infectious diseases: Where we came from, and where we are going. Rev. Esp. Quim. 2013, 26, 81–91.Sambala, E.Z.; Manderson, L. Policy perspectives on post pandemic influenza vaccination in Ghana and Malawi. BMC Public Health 2017, 17, 227.Garnett, G.P. Role of herd immunity in determining the effect of vaccines against sexually transmitted disease. J. Infect. Dis. 2005, 191 (Suppl. 1), S97–S106.Zhan, C.; Chi, K.T.; Lai, Z.; Chen, X.; Mo, M. General Model for COVID-19 Spreading with Consideration of Intercity Migration, Insufficient Testing and Active Intervention: Application to Study of Pandemic Progression in Japan and USA. medRxiv 2020, doi:10.1101/2020.03.25.20043380.Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.; Coupland, H.; Mellan, T.; Zhu, H.; Berah, T.; Eaton, J.; Perez Guzman, P.; et al. Report 13: Estimating the Number of Infections and the Impact of Non-Pharmaceutical Interventions on COVID-19 in 11 European Countries; Imperial College London: London, UK, 2020.Karin, O.; Bar-On, Y.M.; Milo, T.; Katzir, I.; Mayo, A.; Korem, Y.; Dudovich, B.; Yashiv, E.; Zehavi, A.J.; Davidovich, N.; et al. Adaptive cyclic exit strategies from lockdown to suppress COVID-19 and allow economic activity. medRxiv 2020, doi:10.1101/2020.04.04.20053579Casadevall, A.; Pirofski, L.A. The convalescent sera option for containing COVID-19. J. Clin. Investig. 2020, 130, 1545–1548.Walker, P.G.; Whittaker, C.; Watson, O.; Baguelin, M.; Ainslie, K.E.C.; Bhatia, S.; Boonyasiri, A.; Boyd, O.; Cattarino, L. The Global Impact of covid-19 and Strategies for Mitigation and Suppression; Imperial College of London: London, UK, 2020.The Coalition for Epidemic Preparedness Innovations. CEPI welcomes UK Government’s funding and highlights need for $2 billion to develop a vaccine against COVID-19. 2020. Available online: https://cepi.net/news_cepi/2-billion-required-to-develop-a-vaccine- against-the-covid-19-virus/ (accessed on 16/04/2020).James, A.; Hendy, S.C.; Plank, M.J.; Steyn, N. Suppression and Mitigation Strategies for Control of COVID- 19 in New Zealand. medRxiv 2020, doi:10.1101/2020.03.26.20044677Anderson, R.M.; Heesterbeek, H.; Klinkenberg, D.; Hollingsworth, T.D. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet 2020, 395, 931–934.Colson, P.; Rolain, J.M.; Lagier, J.C.; Brouqui, P.; Raoult, D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents 2020, 55, 105932Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin. Immunol. 2020, 214, 108393.Cortegiani, A.; Ingoglia, G.; Ippolito, M.; Giarratano, A.; Einav, S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care 2020, 57, 279–283COVID-19 reinfection becoming an issue in China, strategist says. Available online: https://www.cnbc.com/video/2020/03/16/covid-19-reinfection-becoming-an-issue-in-china-strategistsays. html (accessed on 7 of April 2020).Sanche, S.; Lin, Y.T.; Xu, C.; Romero-Severson, E.; Hengartner, N.; Ke, R. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2020, doi:10.3201/eid2607.200282Armocida, B.; Formenti, B.; Ussai, S.; Palestra, F.; Missoni, E. The Italian health system and the COVID-19 challenge. Lancet Public Health 2020, doi:10.1016/S2468-2667(20)30074-8Worst-Case Estimates for U.S. Coronavirus Deaths, Available online: https://www.nytimes.com/2020/03/13/us/coronavirus-deaths-estimate.html (accessed on 7 of April 2020).Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.G.T.; Fu, H.; et al. Estimates of the severity of coronavirus disease 2019: A modelbased analysis. Lancet Infect Dis. 2020, doi: 10.1016/S1473-3099(20)30243-7Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 though the postpandemic period. Science 2020, doi:10.1126/science.abb5793Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020, 8, e21.Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun. 2020, 109, 102433.Nasiri, M.J.; Haddadi, S.; Tahvildari, A.; Farsi, Y.; Arbabi, M.; Hasanzadeh, S.; Jamshidi, P.; Murthi, M.; Mirsaeidi, M. COVID-19 clinical characteristics, and sex-specific risk of mortality: Systematic review and meta-analysis. medRxiv 2020, doi:10.1101/2020.03.24.20042903Bao, L.; Deng, W.; Gao, H.; Xiao, C.; Liu, J.; Xue, J.; Lv, Q.; Liu, J.; Yu, P.; Xu, Y.; et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv 2020, doi:10.1101/2020.03.13.990226Andre, F.E.; Booy, R.; Bock, H.L. Bulletin of the World Health Organization Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ. 2008, 86, 140–146John, T.J.; Samuel, R. Herd immunity and herd effect: New insights and definitions. Eur. J. Epidemiol. 2000, 16, 601–606.Anderson, R.M.; May, R.M. Vaccination and herd immunity to infectious diseases. Nature 1985 318, 323- 329.Adegbola, R.; Secka, O.; Lahai, G.; Lloyd-Evans, N.; Njie, A.; Usen, S.; Oluwalana, C.; Obaro, S.; Weber, M.; Corrah, T.; et al. Elimination of Haemophilus influenzae type b (Hib) disease from the Gambia after introduction of a Hib conjugate vaccine: A prospective study. Lancet 2005, 366, 144–150.Moulton, L.H.; Chung, S.; Croll, J.; Reid, R.; Weatherholtz, R.C.; Santosham, M. Estimation of the indirect effect of Haemophilus influenzae type b conjugate vaccine in an American Indian population. Int. J. Epidemiol. 2000, 29, 753–756.Schlenker, T.L.; Bain, C.; Baughman, A.L.; Hadler, S.C. Measles herd immunity: The association of attack rates with immunization rates in preschool children. JAMA 1992, 267, 823–826.Hochberg, M.E. Importance of suppression and mitigation measures in managing COVID-19 outbreaks. medRxiv 2020, doi:10.1101/2020.03.31.20048835Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 105949, doi:10.1016/j.ijantimicag.2020.105949Stebbing, J.; Phelan, A.; Griffin, I.; Tucker, C.; Oechsle, O.; Smith, D.; Richardson, P. COVID-19: Combining antiviral and anti-inflammatory treatments. Lancet Infect. Dis. 2020, 20, 400-402Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther. 2020, 14, 58–60.Katul, G.G.; Mrad, A.; Bonetti, S.; Manoli, G.; Parolari, A.J. Global convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics. medRxiv 2020, doi:10.1101/2020.04.10.20060954Brodin, P. Why is COVID‐19 so mild in children? Acta Paediatr. 2020, 109, 1082–1083Pang, J.; Wang, M.X.; Ang, I.Y.; Tan, S.H.; Lewis, R.F.; Chen, J.I.; Gutierrez, R.A.; Gwee, S.X.; Chua, P.E.; Yang, Q.; Ng, X.Y. Potential rapid diagnostics, vaccine and therapeutics for 2019 novel coronavirus (2019- nCoV): A systematic review. J. Clin. Med. 2020, 9, 623.Graham, R.L.; Donaldson, E.F.; Baric, R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 2013, 11, 836–848.Zhang, J.; Zeng, H.; Gu, J.; Li, H.; Zheng, L.; Zou, Q. Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines 2020, 8, 153.Benjamin-Chung, J.; Abedin, J.; Berger, D.; Clark, A.; Jimenez, V.; Konagaya, E.; Tran, D.; Arnold, B.F.; Hubbard, A.E.; Luby, S.P.; et al. Spillover effects on health outcomes in low-and middle-income countries: A systematic review. Int. J. Epidemol. 2017, 46, 1251–1276.Ali, M.; Qadri, F.; Kim, D.R.; Islam, T.; Im, J.; Ahmmed, F.; Chon, Y.; Islam Khan, A.; Zaman, K.; Marks, F.; et al. Unmasking herd protection by an oral cholera vaccine in a cluster-randomized trial. Int. J. Epidemol. 2019, 48, 1252–1261.Callaway, E. Should scientists infect healthy people with the coronavirus to test vaccines? Nature 2020, 580, 17Plotkin, S.A.; Plotkin, S.A. Correlates of vaccine-induced immunity. Clin. Infect. Dis. 2008, 47, 401–409.Callaway, E. The race for coronavirus vaccines: A graphical guide. Nature 2020, 580, 576.Lang, P.O.; Aspinall, R. Immunosenescence and herd immunity: With an ever-increasing aging population do we need to rethink vaccine schedules? Expert Rev. Vaccines 2012, 11, 167–176.Nicola, D.; Vito, M.; Linda, J.S.; Canio, B. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res. Vet. Sci. 2020, 131, 21–23.Del Giudice, G.; Goronzy, J.J.; Grubeck-Loebenstein, B.; Lambert, P.H.; Mrkvan, T.; Stoddard, J.J.; Doherty, T.M. Fighting against a protean enemy: Immunosenescence, vaccines, and healthy aging. NPJ Aging Mech. Dis. 2017, 4, 1.Jin, Y.; Yang, H.; Ji, W.; Wu, W.; Chen, S.; Zhang, W.; Duan, G. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020, 12, 372.Robson, B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput. Biol. Med. 2020, 26, 103670.Ahmed, S.F.; Quadeer, A.A.; McKay, M.R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses 2020, 12, 254.Colgrove, J. Vaccine refusal revisited the limits of public health persuasion and coercion. N. Eng. J. Med. 2016, 375, 1316–1317.Dudley, M.Z.; Halsey, N.A.; Omer, S.B.; Orenstein, W.A.; TO’Leary, S.; Limaye, R.J.; Salmon, D.A. The state of vaccine safety science: Systematic reviews of the evidence. Lancet Infect. Dis. 2020, 20, e80–e89Metcalf, C.J.; Ferrari, M.; Graham, A.L.; Grenfell, B.T. Understanding herd immunity. Trends Immunol. 2015, 36, 753–755.Betsch, C.; Böhm, R.; Korn, L.; Holtmann, C. On the benefits of explaining herd immunity in vaccine advocacy. Nature Hum. Behav. 2017, 1, 0056.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/4bb6b066-5531-4318-839f-fc56857eb62b/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/7414426c-e574-4931-b43c-0603d7d0732f/download733bec43a0bf5ade4d97db708e29b185MD53ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1039906https://bonga.unisimon.edu.co/bitstreams/863fcefc-1747-4ac4-a705-6ca5b520ee09/downloada88b720e70d03c8c4a2c6678e21b4882MD51TEXTDynamics_Population_Immunity_Due.pdf.txtDynamics_Population_Immunity_Due.pdf.txtExtracted texttext/plain75533https://bonga.unisimon.edu.co/bitstreams/f589e90c-4ffd-42eb-b833-fe7c4ee7e088/downloadcd81c58b6954db78ec568d597ef98089MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain76702https://bonga.unisimon.edu.co/bitstreams/fb8fa755-37fa-4942-b62e-525a4fab92b0/download936c61723520cc1da7bcafa44da249eeMD56THUMBNAILDynamics_Population_Immunity_Due.pdf.jpgDynamics_Population_Immunity_Due.pdf.jpgGenerated Thumbnailimage/jpeg1568https://bonga.unisimon.edu.co/bitstreams/0cdec092-b6f6-4747-908a-e358443a3108/download2a080e165d15848ca31cd3cf7fe8e65fMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5246https://bonga.unisimon.edu.co/bitstreams/ebf5e52f-c89c-4fef-aba6-f1b1af4c1b7e/download4efe87d2d8049f3c38e8a066d9d66f8cMD5720.500.12442/5710oai:bonga.unisimon.edu.co:20.500.12442/57102024-08-14 21:54:34.296http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u