Automatic segmentation of a meningioma using a computational technique in magnetic resonance imaging

Through this work we propose a computational technique for the segmentation of a brain tumor, identified as meningioma (MGT), which is present in magnetic resonance images (MRI). This technique consists of 3 stages developed in the three-dimensional domain: pre-processing, segmentation and post-proc...

Full description

Autores:
Vera, Miguel
Huérfano, Yoleidy
Molina, Ángel Valentín
Valbuena, Oscar
Vivas, Marisela
Cuberos, María
Salazar, Williams
Vera, María Isabel
Borrero, Maryury
Hernández, Carlos
Barrera, Doris
Martínez, Luis Javier
Salazar, Juan
Gelvez, Elkin
Contreras, Yudith
Sáenz, Frank
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2521
Acceso en línea:
http://hdl.handle.net/20.500.12442/2521
Palabra clave:
Magnetic resonance brain imaging
Brain tumor
Meningioma
Computational technique
Segmentation
Imágenes cerebrales por resonancia magnética
Tumor cerebral
Meningioma
Técnica computacional
Segmentación
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_0480d4fd7c805954c166d9eba90f1a67
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/2521
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Automatic segmentation of a meningioma using a computational technique in magnetic resonance imaging
dc.title.alternative.spa.fl_str_mv Segmentación automática de un meningioma usando una técnica computacional en imágenes de resonancia magnética
title Automatic segmentation of a meningioma using a computational technique in magnetic resonance imaging
spellingShingle Automatic segmentation of a meningioma using a computational technique in magnetic resonance imaging
Magnetic resonance brain imaging
Brain tumor
Meningioma
Computational technique
Segmentation
Imágenes cerebrales por resonancia magnética
Tumor cerebral
Meningioma
Técnica computacional
Segmentación
title_short Automatic segmentation of a meningioma using a computational technique in magnetic resonance imaging
title_full Automatic segmentation of a meningioma using a computational technique in magnetic resonance imaging
title_fullStr Automatic segmentation of a meningioma using a computational technique in magnetic resonance imaging
title_full_unstemmed Automatic segmentation of a meningioma using a computational technique in magnetic resonance imaging
title_sort Automatic segmentation of a meningioma using a computational technique in magnetic resonance imaging
dc.creator.fl_str_mv Vera, Miguel
Huérfano, Yoleidy
Molina, Ángel Valentín
Valbuena, Oscar
Vivas, Marisela
Cuberos, María
Salazar, Williams
Vera, María Isabel
Borrero, Maryury
Hernández, Carlos
Barrera, Doris
Martínez, Luis Javier
Salazar, Juan
Gelvez, Elkin
Contreras, Yudith
Sáenz, Frank
dc.contributor.author.none.fl_str_mv Vera, Miguel
Huérfano, Yoleidy
Molina, Ángel Valentín
Valbuena, Oscar
Vivas, Marisela
Cuberos, María
Salazar, Williams
Vera, María Isabel
Borrero, Maryury
Hernández, Carlos
Barrera, Doris
Martínez, Luis Javier
Salazar, Juan
Gelvez, Elkin
Contreras, Yudith
Sáenz, Frank
dc.subject.eng.fl_str_mv Magnetic resonance brain imaging
Brain tumor
Meningioma
Computational technique
topic Magnetic resonance brain imaging
Brain tumor
Meningioma
Computational technique
Segmentation
Imágenes cerebrales por resonancia magnética
Tumor cerebral
Meningioma
Técnica computacional
Segmentación
dc.subject.spa.fl_str_mv Segmentation
Imágenes cerebrales por resonancia magnética
Tumor cerebral
Meningioma
Técnica computacional
Segmentación
description Through this work we propose a computational technique for the segmentation of a brain tumor, identified as meningioma (MGT), which is present in magnetic resonance images (MRI). This technique consists of 3 stages developed in the three-dimensional domain: pre-processing, segmentation and post-processing. The percent relative error (PrE) is considered to compare the segmentations of the MGT, generated by a neuro-oncologist manually, with the dilated segmentations of the MGT, obtained automatically. The combination of parameters linked to the lowest PrE, provides the optimal parameters of each computational algorithm that makes up the proposed computational technique. Results allow reporting a PrE of 1.44%, showing an excellent correlation between the manual segmentations and those produced by the computational technique developed.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2019-01-24T22:46:58Z
dc.date.available.none.fl_str_mv 2019-01-24T22:46:58Z
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 26107988
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/2521
identifier_str_mv 26107988
url http://hdl.handle.net/20.500.12442/2521
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Sociedad Venezolana de Farmacología Clínica y Terapéutica
dc.source.spa.fl_str_mv Revista AVFT-Archivos Venezolanos de Farmacología y Terapéutica
Vol. 37, No. 4 (2018)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv http://www.revistaavft.com/images/revistas/2018/avft_4_2018/6_automatic_segmentation_of_a_meningioma.pdf
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/197f6a9f-7f01-4e2a-ac7e-53ca45da4523/download
https://bonga.unisimon.edu.co/bitstreams/7fdde15c-f0ba-4c7f-ae17-1802870e9abd/download
https://bonga.unisimon.edu.co/bitstreams/6942a067-408d-47a2-9742-7f18f1611157/download
https://bonga.unisimon.edu.co/bitstreams/a6a7aaec-e90a-4412-826f-b2bffed19f2e/download
https://bonga.unisimon.edu.co/bitstreams/e5169245-ff97-4941-878d-58cd087564c9/download
https://bonga.unisimon.edu.co/bitstreams/73e8030b-b648-4cb0-b08e-f3a560a5ae7b/download
bitstream.checksum.fl_str_mv 3ff85a08c2c828bb739676cbe2532ffe
3fdc7b41651299350522650338f5754d
c10de23f5af2bdab78f953452167dccd
97d623503c3a5d6399aa7b5002746b62
5bed1389a4fe4f72275fcf87ba97c0b2
23cf069566eafc309d39125d1eb713ff
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076158477598720
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Vera, Miguelc485e4e3-5bbd-4d00-8ec7-e5bc8a0a21e3Huérfano, Yoleidy769899ba-e6a1-4144-95c2-ff4614f93578Molina, Ángel Valentín5fcd607f-8710-40a9-b4dc-b9d1f71d1c1eValbuena, Oscar262b3f8e-b422-4786-b036-2aaa5b963f84Vivas, Marisela8a48d7f3-9b15-4821-892c-91f9749f1286Cuberos, María8c8b8bcd-088d-4518-82f4-d7b4038e6a4bSalazar, Williamsfd007214-08c4-4cd6-ae19-7f2ba4f184eaVera, María Isabelc522f56e-ec03-4aa6-9e83-d339a37388acBorrero, Maryuryce8424b3-6f43-4a46-8f73-214fafbb62fdHernández, Carlosa82d5fb1-0724-456f-8223-93882ad7278dBarrera, Doris4b365c16-7d6f-4aee-985c-e70d635e8807Martínez, Luis Javierd0fa0a36-7752-496a-979e-48fdb02a5ee9Salazar, Juanfbd053e7-5aea-424c-812f-92153ecb9181Gelvez, Elkin90dd023c-1cb7-48ef-bff5-4071ee82a94cContreras, Yudith5ec79ce9-bc7e-44bb-95cb-bf1dab3e3a64Sáenz, Frank5a93b50c-3ebe-476e-8aa6-4286185e2b1d2019-01-24T22:46:58Z2019-01-24T22:46:58Z201826107988http://hdl.handle.net/20.500.12442/2521Through this work we propose a computational technique for the segmentation of a brain tumor, identified as meningioma (MGT), which is present in magnetic resonance images (MRI). This technique consists of 3 stages developed in the three-dimensional domain: pre-processing, segmentation and post-processing. The percent relative error (PrE) is considered to compare the segmentations of the MGT, generated by a neuro-oncologist manually, with the dilated segmentations of the MGT, obtained automatically. The combination of parameters linked to the lowest PrE, provides the optimal parameters of each computational algorithm that makes up the proposed computational technique. Results allow reporting a PrE of 1.44%, showing an excellent correlation between the manual segmentations and those produced by the computational technique developed.Este trabajo propone una técnica computacional para la segmentación de un tumor cerebral, identificado como meningioma (MGT), que está presente en imágenes de resonancia magnética (MRI). Esta técnica consta de 3 etapas desarrolladas en el dominio tridimensional: preprocesamiento, segmentación y postprocesamiento. El porcentaje de error relativo (PrE) se considera para comparar las segmentaciones de la MGT, generadas por un neurooncólogo de forma manual, con las segmentaciones dilatadas de la MGT, obtenidas automáticamente. La combinación de parámetros vinculados al PrE más bajo proporciona los parámetros óptimos de cada algoritmo computacional que conforma la técnica de cálculo propuesta. Los resultados permiten informar un PrE de 1.44%, mostrando una excelente correlación entre las segmentaciones manuales y las producidas por la técnica computacional desarrollada.engSociedad Venezolana de Farmacología Clínica y TerapéuticaRevista AVFT-Archivos Venezolanos de Farmacología y TerapéuticaVol. 37, No. 4 (2018)http://www.revistaavft.com/images/revistas/2018/avft_4_2018/6_automatic_segmentation_of_a_meningioma.pdfMagnetic resonance brain imagingBrain tumorMeningiomaComputational techniqueSegmentationImágenes cerebrales por resonancia magnéticaTumor cerebralMeningiomaTécnica computacionalSegmentaciónAutomatic segmentation of a meningioma using a computational technique in magnetic resonance imagingSegmentación automática de un meningioma usando una técnica computacional en imágenes de resonancia magnéticaarticlehttp://purl.org/coar/resource_type/c_6501Stelzer K. Epidemiology and prognosis of brain metastases. Surg Neurol Int. 2013;4(Suppl 4):S192-202.Mcneill KA. Epidemiology of Brain Tumors. Neurol Clin. 2016;34(4):981-998.American Brain Tumor Association (ABTA). About Brain Tumors: A Primer for Patients and Caregivers. 9ª Edition. 2015 ABTA.WHO (2007). Cavenee W, Louis D, Ohgaki H et al. Eds. WHO Classification of Tumours of the Central Nervous System. WHO Regional Office Europe.Burger, Scheithauer, and Vogel, Surgical Pathology of the Nervous System and Its Coverings. 4th edition. Churchill Livingstone, Nueva York, 2002.Gudbjartsson H. y Patz S.The rician distribution of noisy MRI data, Magn. Reson. Med. 1995:34 (1):910-914.Macovski A. Noise in MRI, Magn. Reson. Med. 1996:36 (1) 494-497.Sanjuán A., Price C., Mancini L., Josse G., Grogan A., Yamamoto A., Geva S., Leff A., Yousry T., Seghier M. Automated identification of brain tumors from single MR images based on segmentation with refined patient-specific priors. Frontiers in Neuroscience. 2013:7(1):241-257Hsieh T., Liu Y., Liao C., Xiao F., Chiang I., Wong J. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. BMC Medical Informatics and Decision Making. 2011:11(1): 11-54.Kaus M., Warfield S., Nabavi A., Chatzidakis E., Black P., Jolesz F. (1999). Segmentation of Meningiomas and Low Grade Gliomas in MRI. In Proceedings of Medical Image Computing and Computer-Assisted Intervention -- MICCAI’99. Kikinis R., Taylor, C. and Colchester A. editors. Springer Berlin Heidelberg. 1-10.Serra J. Image Analysis Using Mathematical Morphology. London, England: Academic Press, 1982.González R., Woods R. Digital Image Processing. USA: Prentice Hall, 2001.Mukhopadhyay S., Chanda B. A multiscale morphological approach to local contrast enhancement. Signal Processing. 2000: 80(4): 685– 696.Yu Z., Wei G., Zhen C., Jing T., Ling L. Medical images edge detection based on mathematical morphology. In Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai– China, September 2005, pp. 6492–6495.W. Pratt. Digital Image Processing. USA: John Wiley & Sons Inc, 2007.Fischer M., Paredes J., Arce G. Weighted median image sharpeners for the world wide web. IEEE Transactions on Image Processing. 2002:11(7):717-27.V. Vapnik, Statistical Learning Theory. New York: John Wiley & Sons, 1998.E. Osuna, R. Freund, y F. Girosi. Training support vector machines: an application to face detection. In Conference on Computer Vision and Pattern Recognition (CVPR ’97), San Juan, Puerto Rico, 1997, pp. 130–136.A. Smola, “Learning with kernels,” Ph.D Thesis, Technische Universitt Berlin,Germany, 1998.B. Scholkopf y A. Smola, Learning with Kernels: Support Vector Machines, Regularization,Optimization, and Beyond. Cambridge, MA , USA: The MIT Press, 2002.J. Suykens, T. V. Gestel, y J. D. Brabanter, Least Squares Support Vector Machines.UK: World Scientific Publishing Co., 2002.M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, y T. Poggio. Pedestrian detection using wavelet templates. In CVPR ’97: Conference on Computer Vision and Pattern Recognition (CVPR ’97). Washington, DC, USA: IEEE Computer Society, 1997, pp. 193–200.Vera M. Segmentación de estructuras cardiacas en imágenes de tomografía computarizada multi-corte. Ph.D. dissertation, Universidad de los Andes, Mérida-Venezuela, 2014.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf741377https://bonga.unisimon.edu.co/bitstreams/197f6a9f-7f01-4e2a-ac7e-53ca45da4523/download3ff85a08c2c828bb739676cbe2532ffeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/7fdde15c-f0ba-4c7f-ae17-1802870e9abd/download3fdc7b41651299350522650338f5754dMD52TEXTAutomatic segmentation.pdf.txtAutomatic segmentation.pdf.txtExtracted texttext/plain29472https://bonga.unisimon.edu.co/bitstreams/6942a067-408d-47a2-9742-7f18f1611157/downloadc10de23f5af2bdab78f953452167dccdMD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain29950https://bonga.unisimon.edu.co/bitstreams/a6a7aaec-e90a-4412-826f-b2bffed19f2e/download97d623503c3a5d6399aa7b5002746b62MD55THUMBNAILAutomatic segmentation.pdf.jpgAutomatic segmentation.pdf.jpgGenerated Thumbnailimage/jpeg2093https://bonga.unisimon.edu.co/bitstreams/e5169245-ff97-4941-878d-58cd087564c9/download5bed1389a4fe4f72275fcf87ba97c0b2MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg7097https://bonga.unisimon.edu.co/bitstreams/73e8030b-b648-4cb0-b08e-f3a560a5ae7b/download23cf069566eafc309d39125d1eb713ffMD5620.500.12442/2521oai:bonga.unisimon.edu.co:20.500.12442/25212024-08-14 21:54:14.435open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=