Automatic segmentation of a meningioma using a computational technique in magnetic resonance imaging
Through this work we propose a computational technique for the segmentation of a brain tumor, identified as meningioma (MGT), which is present in magnetic resonance images (MRI). This technique consists of 3 stages developed in the three-dimensional domain: pre-processing, segmentation and post-proc...
- Autores:
-
Vera, Miguel
Huérfano, Yoleidy
Molina, Ángel Valentín
Valbuena, Oscar
Vivas, Marisela
Cuberos, María
Salazar, Williams
Vera, María Isabel
Borrero, Maryury
Hernández, Carlos
Barrera, Doris
Martínez, Luis Javier
Salazar, Juan
Gelvez, Elkin
Contreras, Yudith
Sáenz, Frank
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/2521
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/2521
- Palabra clave:
- Magnetic resonance brain imaging
Brain tumor
Meningioma
Computational technique
Segmentation
Imágenes cerebrales por resonancia magnética
Tumor cerebral
Meningioma
Técnica computacional
Segmentación
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Summary: | Through this work we propose a computational technique for the segmentation of a brain tumor, identified as meningioma (MGT), which is present in magnetic resonance images (MRI). This technique consists of 3 stages developed in the three-dimensional domain: pre-processing, segmentation and post-processing. The percent relative error (PrE) is considered to compare the segmentations of the MGT, generated by a neuro-oncologist manually, with the dilated segmentations of the MGT, obtained automatically. The combination of parameters linked to the lowest PrE, provides the optimal parameters of each computational algorithm that makes up the proposed computational technique. Results allow reporting a PrE of 1.44%, showing an excellent correlation between the manual segmentations and those produced by the computational technique developed. |
---|