Algoritmo computacional para el análisis y toma de decisiones en datos sobre intentos de suicidio en Rionegro entre los años 2016 - 2021, utilizando estrategias de machine learning
El proyecto titulado "Algoritmo Computacional para el Análisis y Toma de Decisiones en Datos sobre Intentos de Suicidio en Rionegro entre 2016 y 2021, empleando Estrategias de Aprendizaje Automático", tiene como objetivo utilizar métodos de aprendizaje automático para analizar información...
- Autores:
-
Monsalve Botero, Mauricio
Morales Henao, Andrés Camilo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universitaria Remington
- Repositorio:
- Repositorio institucional Uniremington
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniremington.edu.co:123456789/2660
- Acceso en línea:
- https://repositorio.uniremington.edu.co/handle/123456789/2660
- Palabra clave:
- Intentos de suicidio
Dataset
Análisis de datos
Machine learning
Clasificación
Regresión
Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
Suicidio
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
URemingtn2_a1857b918a01adee30114836c01ab267 |
---|---|
oai_identifier_str |
oai:repositorio.uniremington.edu.co:123456789/2660 |
network_acronym_str |
URemingtn2 |
network_name_str |
Repositorio institucional Uniremington |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Algoritmo computacional para el análisis y toma de decisiones en datos sobre intentos de suicidio en Rionegro entre los años 2016 - 2021, utilizando estrategias de machine learning |
title |
Algoritmo computacional para el análisis y toma de decisiones en datos sobre intentos de suicidio en Rionegro entre los años 2016 - 2021, utilizando estrategias de machine learning |
spellingShingle |
Algoritmo computacional para el análisis y toma de decisiones en datos sobre intentos de suicidio en Rionegro entre los años 2016 - 2021, utilizando estrategias de machine learning Intentos de suicidio Dataset Análisis de datos Machine learning Clasificación Regresión Aprendizaje automático (Inteligencia artificial) Toma de decisiones Suicidio |
title_short |
Algoritmo computacional para el análisis y toma de decisiones en datos sobre intentos de suicidio en Rionegro entre los años 2016 - 2021, utilizando estrategias de machine learning |
title_full |
Algoritmo computacional para el análisis y toma de decisiones en datos sobre intentos de suicidio en Rionegro entre los años 2016 - 2021, utilizando estrategias de machine learning |
title_fullStr |
Algoritmo computacional para el análisis y toma de decisiones en datos sobre intentos de suicidio en Rionegro entre los años 2016 - 2021, utilizando estrategias de machine learning |
title_full_unstemmed |
Algoritmo computacional para el análisis y toma de decisiones en datos sobre intentos de suicidio en Rionegro entre los años 2016 - 2021, utilizando estrategias de machine learning |
title_sort |
Algoritmo computacional para el análisis y toma de decisiones en datos sobre intentos de suicidio en Rionegro entre los años 2016 - 2021, utilizando estrategias de machine learning |
dc.creator.fl_str_mv |
Monsalve Botero, Mauricio Morales Henao, Andrés Camilo |
dc.contributor.advisor.none.fl_str_mv |
Briñez de León, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Monsalve Botero, Mauricio Morales Henao, Andrés Camilo |
dc.subject.spa.fl_str_mv |
Intentos de suicidio Dataset Análisis de datos Machine learning Clasificación Regresión |
topic |
Intentos de suicidio Dataset Análisis de datos Machine learning Clasificación Regresión Aprendizaje automático (Inteligencia artificial) Toma de decisiones Suicidio |
dc.subject.lemb.none.fl_str_mv |
Aprendizaje automático (Inteligencia artificial) Toma de decisiones Suicidio |
description |
El proyecto titulado "Algoritmo Computacional para el Análisis y Toma de Decisiones en Datos sobre Intentos de Suicidio en Rionegro entre 2016 y 2021, empleando Estrategias de Aprendizaje Automático", tiene como objetivo utilizar métodos de aprendizaje automático para analizar información acerca de los intentos de suicidio en la zona de Rionegro a lo largo de seis años. La meta principal consiste en descubrir tendencias, identificar factores de riesgo y posibles indicadores de intentos de suicidio, con la finalidad de desarrollar un sistema capaz de prevenir y detectar estos eventos de manera temprana. Este proyecto involucra la recolección y depuración de datos históricos relacionados con los intentos de suicidio en Rionegro durante el período comprendido entre 2016 y 2021. Posteriormente, se utilizarán algoritmos de aprendizaje automático, tales como clasificación y regresión, para analizar estos datos y extraer información relevante. Se explorarán diversas técnicas de preprocesamiento de datos, selección de características y modelado con el objetivo de obtener los mejores resultados posibles. Además, se llevará a cabo una evaluación exhaustiva de los modelos desarrollados, utilizando métricas de desempeño apropiadas para problemas de clasificación y regresión. Se ajustarán los modelos según sea necesario y se realizarán pruebas de validación cruzada para asegurar su robustez y generalización. Como resultado final, se espera obtener un algoritmo computacional capaz de analizar datos sobre intentos de suicidio en Rionegro, proporcionando información valiosa para la toma de decisiones en políticas de salud mental y programas de prevención. Este algoritmo tiene el potencial de contribuir significativamente a la identificación y atención temprana de personas en riesgo de suicidio en la región. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-15T22:21:44Z |
dc.date.available.none.fl_str_mv |
2024-04-15T22:21:44Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uniremington.edu.co/handle/123456789/2660 |
url |
https://repositorio.uniremington.edu.co/handle/123456789/2660 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Corporación Universitaria Remington, 2024 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) Derechos Reservados - Corporación Universitaria Remington, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
29 p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universitaria Remington |
dc.publisher.place.spa.fl_str_mv |
Medellín (Antioquia, Colombia) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Sistemas |
institution |
Corporación Universitaria Remington |
bitstream.url.fl_str_mv |
https://repositorio.uniremington.edu.co/bitstreams/3bf51554-5688-448e-a29e-8b619592a495/download https://repositorio.uniremington.edu.co/bitstreams/d48a1ed0-a084-4491-988f-cae38ece0099/download https://repositorio.uniremington.edu.co/bitstreams/a7f57c73-4def-49f1-9cfd-ff49d6bf8063/download https://repositorio.uniremington.edu.co/bitstreams/d6a43a52-04da-4c9e-a91a-72c641ee1efc/download https://repositorio.uniremington.edu.co/bitstreams/34982124-f11d-4083-aad7-d9a3d8d0d2ea/download |
bitstream.checksum.fl_str_mv |
a0479e1072dbba4a2f5beb5e51417d34 8a4605be74aa9ea9d79846c1fba20a33 9587d3e4df4e7c4c3b9363d783028919 1380ed92535b4e6abd48461af2528e31 2809ee499aa89fbe09477a08390525ae |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UNIREMINGTON |
repository.mail.fl_str_mv |
biblioteca@uniremington.edu.co |
_version_ |
1812100400578297856 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos Reservados - Corporación Universitaria Remington, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Briñez de León, Juan CarlosMonsalve Botero, MauricioMorales Henao, Andrés Camilo2024-04-15T22:21:44Z2024-04-15T22:21:44Z2024https://repositorio.uniremington.edu.co/handle/123456789/2660El proyecto titulado "Algoritmo Computacional para el Análisis y Toma de Decisiones en Datos sobre Intentos de Suicidio en Rionegro entre 2016 y 2021, empleando Estrategias de Aprendizaje Automático", tiene como objetivo utilizar métodos de aprendizaje automático para analizar información acerca de los intentos de suicidio en la zona de Rionegro a lo largo de seis años. La meta principal consiste en descubrir tendencias, identificar factores de riesgo y posibles indicadores de intentos de suicidio, con la finalidad de desarrollar un sistema capaz de prevenir y detectar estos eventos de manera temprana. Este proyecto involucra la recolección y depuración de datos históricos relacionados con los intentos de suicidio en Rionegro durante el período comprendido entre 2016 y 2021. Posteriormente, se utilizarán algoritmos de aprendizaje automático, tales como clasificación y regresión, para analizar estos datos y extraer información relevante. Se explorarán diversas técnicas de preprocesamiento de datos, selección de características y modelado con el objetivo de obtener los mejores resultados posibles. Además, se llevará a cabo una evaluación exhaustiva de los modelos desarrollados, utilizando métricas de desempeño apropiadas para problemas de clasificación y regresión. Se ajustarán los modelos según sea necesario y se realizarán pruebas de validación cruzada para asegurar su robustez y generalización. Como resultado final, se espera obtener un algoritmo computacional capaz de analizar datos sobre intentos de suicidio en Rionegro, proporcionando información valiosa para la toma de decisiones en políticas de salud mental y programas de prevención. Este algoritmo tiene el potencial de contribuir significativamente a la identificación y atención temprana de personas en riesgo de suicidio en la región.PregradoIngeniero(a) de Sistemas29 p.application/pdfspaCorporación Universitaria RemingtonMedellín (Antioquia, Colombia)Facultad de IngenieríasIngeniería de SistemasIntentos de suicidioDatasetAnálisis de datosMachine learningClasificaciónRegresiónAprendizaje automático (Inteligencia artificial)Toma de decisionesSuicidioAlgoritmo computacional para el análisis y toma de decisiones en datos sobre intentos de suicidio en Rionegro entre los años 2016 - 2021, utilizando estrategias de machine learningTrabajo de grado - Pregradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - PregradoPublicationORIGINALRIU-PRE-2024 Algoritmo computacional analisis.pdfRIU-PRE-2024 Algoritmo computacional analisis.pdfapplication/pdf1121300https://repositorio.uniremington.edu.co/bitstreams/3bf51554-5688-448e-a29e-8b619592a495/downloada0479e1072dbba4a2f5beb5e51417d34MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uniremington.edu.co/bitstreams/d48a1ed0-a084-4491-988f-cae38ece0099/download8a4605be74aa9ea9d79846c1fba20a33MD52Cesión Derechos_TG 8.pdfapplication/pdf336553https://repositorio.uniremington.edu.co/bitstreams/a7f57c73-4def-49f1-9cfd-ff49d6bf8063/download9587d3e4df4e7c4c3b9363d783028919MD53TEXTRIU-PRE-2024 Algoritmo computacional analisis.pdf.txtRIU-PRE-2024 Algoritmo computacional analisis.pdf.txtExtracted texttext/plain28047https://repositorio.uniremington.edu.co/bitstreams/d6a43a52-04da-4c9e-a91a-72c641ee1efc/download1380ed92535b4e6abd48461af2528e31MD54THUMBNAILRIU-PRE-2024 Algoritmo computacional analisis.pdf.jpgRIU-PRE-2024 Algoritmo computacional analisis.pdf.jpgGenerated Thumbnailimage/jpeg3142https://repositorio.uniremington.edu.co/bitstreams/34982124-f11d-4083-aad7-d9a3d8d0d2ea/download2809ee499aa89fbe09477a08390525aeMD55123456789/2660oai:repositorio.uniremington.edu.co:123456789/26602024-05-16 14:02:29.826https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Corporación Universitaria Remington, 2024open.accesshttps://repositorio.uniremington.edu.coRepositorio UNIREMINGTONbiblioteca@uniremington.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |