Investigación sobre la deserción escolar en Colombia mediante el uso de técnicas de machine learning
De Acuerdo con los datos del Ministerio de Educación Nacional, alrededor de unos 400.000 niños y jóvenes han desertado de sus instituciones educativas entre finales de 2022 e inicios del 2023, Esta cifra muestra un notable incremento en comparación con el año anterior, cuando el promedio de deserció...
- Autores:
-
Diosa Guiral, Humberto
Ospina López, Juan Esteban
Reina Morales, Hernán Darío
López Bedoya, Gustavo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universitaria Remington
- Repositorio:
- Repositorio institucional Uniremington
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniremington.edu.co:123456789/2130
- Acceso en línea:
- https://repositorio.uniremington.edu.co/handle/123456789/2130
- Palabra clave:
- Deserción escolar
Herramientas
Inteligencia artificial
Predicción
Educación
Aprendizaje automático (Inteligencia artificial)
Deserción en educación básica
Deserción escolar
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
URemingtn2_84166211481a6c3f36bcdb8cfc9c1c7b |
---|---|
oai_identifier_str |
oai:repositorio.uniremington.edu.co:123456789/2130 |
network_acronym_str |
URemingtn2 |
network_name_str |
Repositorio institucional Uniremington |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Investigación sobre la deserción escolar en Colombia mediante el uso de técnicas de machine learning |
dc.title.alternative.none.fl_str_mv |
Análisis de la deserción escolar en Colombia mediante el uso de técnicas de machine learning |
title |
Investigación sobre la deserción escolar en Colombia mediante el uso de técnicas de machine learning |
spellingShingle |
Investigación sobre la deserción escolar en Colombia mediante el uso de técnicas de machine learning Deserción escolar Herramientas Inteligencia artificial Predicción Educación Aprendizaje automático (Inteligencia artificial) Deserción en educación básica Deserción escolar |
title_short |
Investigación sobre la deserción escolar en Colombia mediante el uso de técnicas de machine learning |
title_full |
Investigación sobre la deserción escolar en Colombia mediante el uso de técnicas de machine learning |
title_fullStr |
Investigación sobre la deserción escolar en Colombia mediante el uso de técnicas de machine learning |
title_full_unstemmed |
Investigación sobre la deserción escolar en Colombia mediante el uso de técnicas de machine learning |
title_sort |
Investigación sobre la deserción escolar en Colombia mediante el uso de técnicas de machine learning |
dc.creator.fl_str_mv |
Diosa Guiral, Humberto Ospina López, Juan Esteban Reina Morales, Hernán Darío López Bedoya, Gustavo |
dc.contributor.advisor.none.fl_str_mv |
Mira Mejía, Jhon Fredy |
dc.contributor.author.none.fl_str_mv |
Diosa Guiral, Humberto Ospina López, Juan Esteban Reina Morales, Hernán Darío López Bedoya, Gustavo |
dc.subject.spa.fl_str_mv |
Deserción escolar Herramientas Inteligencia artificial Predicción Educación |
topic |
Deserción escolar Herramientas Inteligencia artificial Predicción Educación Aprendizaje automático (Inteligencia artificial) Deserción en educación básica Deserción escolar |
dc.subject.lemb.none.fl_str_mv |
Aprendizaje automático (Inteligencia artificial) Deserción en educación básica Deserción escolar |
description |
De Acuerdo con los datos del Ministerio de Educación Nacional, alrededor de unos 400.000 niños y jóvenes han desertado de sus instituciones educativas entre finales de 2022 e inicios del 2023, Esta cifra muestra un notable incremento en comparación con el año anterior, cuando el promedio de deserción escolar fue de 330,000 estudiantes entre 2021 y 2022 (Moreno, 2023) Con lo anteriormente dicho estas cifras son alarmantes ya que tienen una influencia significativa y negativa en el desarrollo social e individual de los niños, niñas y jóvenes que deciden tomar esta decisión y que eventualmente se verán impedidos de acceder a un trabajo que les proporcione una vida digna, mejorar su nivel de vida y contribuir al progreso del país. La falta de infraestructura en algunas zonas del país se convierten también en un obstáculo bastante grande a la hora de acceder a una buena educación para los niños y jóvenes, la falta de transporte, la distancia entre su hogar y el colegio, la falta de maestros debido al difícil acceso y las malas instalaciones son retos por los cuales tienen que atravesar los jóvenes que residen en zonas rurales, en donde la mejor salida para seguir con su formación como persona es el trabajo de campo o colaborar incluso con grupos armados ilegales, de acuerdo con esto los municipios con mayor índice de deserción en el país son Putumayo con una tasa del 8,11%, después a este se encuentran Arauca, Guainía y Caquetá (Rodríguez, 2023) lugares donde la violencia a raíz del conflicto armado el índice es bastante alto. De acuerdo con toda la información anterior se busca utilizar las herramientas del machine learning, para predecir la cantidad de niños y jóvenes que podrían terminar su vida educativa en un futuro y sobre esta manera lograr que estas personas cambien su estilo de vida y tengan la educación que por diferentes motivos ya anteriormente mencionados se vieron en la obligación de abandonar y en muchos casos no volver a retomar por diferentes razones o circunstancias en las cuales se tienen que ver enfrentados día a día en donde algunos lo logran superar y otros se ven derrotados. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-01-31T21:15:42Z |
dc.date.available.none.fl_str_mv |
2024-01-31T21:15:42Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uniremington.edu.co/handle/123456789/2130 |
url |
https://repositorio.uniremington.edu.co/handle/123456789/2130 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Corporación Universitaria Remington, 2024 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) Derechos Reservados - Corporación Universitaria Remington, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
37 p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universitaria Remington |
dc.publisher.place.spa.fl_str_mv |
Medellín (Antioquia, Colombia) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Sistemas Ingeniería Industrial Tecnología en Desarrollo de Software |
institution |
Corporación Universitaria Remington |
bitstream.url.fl_str_mv |
https://repositorio.uniremington.edu.co/bitstreams/55951d9a-b6cd-40f7-8102-e043f0818a15/download https://repositorio.uniremington.edu.co/bitstreams/2b8c5321-c988-4b2a-b7cc-ebc1a47dd090/download https://repositorio.uniremington.edu.co/bitstreams/afe46301-e0fc-4ed1-a2aa-c59dbbbb5631/download https://repositorio.uniremington.edu.co/bitstreams/8dc1a158-2f17-4324-93db-0e97ae2f9d17/download https://repositorio.uniremington.edu.co/bitstreams/bd0566ed-a13e-4720-86fa-65d7431d748e/download |
bitstream.checksum.fl_str_mv |
68910e447823615f21497a0f74e6b813 8a4605be74aa9ea9d79846c1fba20a33 81931ce67faee26e646fe5526024f253 cd2276a42020285e8fb8c9c1764b4387 862a7629ef913d7746884807cac38915 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UNIREMINGTON |
repository.mail.fl_str_mv |
biblioteca@uniremington.edu.co |
_version_ |
1812100409695666176 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos Reservados - Corporación Universitaria Remington, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mira Mejía, Jhon FredyDiosa Guiral, HumbertoOspina López, Juan EstebanReina Morales, Hernán DaríoLópez Bedoya, Gustavo2024-01-31T21:15:42Z2024-01-31T21:15:42Z2024https://repositorio.uniremington.edu.co/handle/123456789/2130De Acuerdo con los datos del Ministerio de Educación Nacional, alrededor de unos 400.000 niños y jóvenes han desertado de sus instituciones educativas entre finales de 2022 e inicios del 2023, Esta cifra muestra un notable incremento en comparación con el año anterior, cuando el promedio de deserción escolar fue de 330,000 estudiantes entre 2021 y 2022 (Moreno, 2023) Con lo anteriormente dicho estas cifras son alarmantes ya que tienen una influencia significativa y negativa en el desarrollo social e individual de los niños, niñas y jóvenes que deciden tomar esta decisión y que eventualmente se verán impedidos de acceder a un trabajo que les proporcione una vida digna, mejorar su nivel de vida y contribuir al progreso del país. La falta de infraestructura en algunas zonas del país se convierten también en un obstáculo bastante grande a la hora de acceder a una buena educación para los niños y jóvenes, la falta de transporte, la distancia entre su hogar y el colegio, la falta de maestros debido al difícil acceso y las malas instalaciones son retos por los cuales tienen que atravesar los jóvenes que residen en zonas rurales, en donde la mejor salida para seguir con su formación como persona es el trabajo de campo o colaborar incluso con grupos armados ilegales, de acuerdo con esto los municipios con mayor índice de deserción en el país son Putumayo con una tasa del 8,11%, después a este se encuentran Arauca, Guainía y Caquetá (Rodríguez, 2023) lugares donde la violencia a raíz del conflicto armado el índice es bastante alto. De acuerdo con toda la información anterior se busca utilizar las herramientas del machine learning, para predecir la cantidad de niños y jóvenes que podrían terminar su vida educativa en un futuro y sobre esta manera lograr que estas personas cambien su estilo de vida y tengan la educación que por diferentes motivos ya anteriormente mencionados se vieron en la obligación de abandonar y en muchos casos no volver a retomar por diferentes razones o circunstancias en las cuales se tienen que ver enfrentados día a día en donde algunos lo logran superar y otros se ven derrotados.PregradoTecnologíaIngeniero(a) de SistemasIngeniero(a) IndustrialTecnólogo(a) en Desarrollo de Software37 p.application/pdfspaCorporación Universitaria RemingtonMedellín (Antioquia, Colombia)Facultad de IngenieríasIngeniería de SistemasIngeniería IndustrialTecnología en Desarrollo de SoftwareDeserción escolarHerramientasInteligencia artificialPredicciónEducaciónAprendizaje automático (Inteligencia artificial)Deserción en educación básicaDeserción escolarInvestigación sobre la deserción escolar en Colombia mediante el uso de técnicas de machine learningAnálisis de la deserción escolar en Colombia mediante el uso de técnicas de machine learningTrabajo de grado - Pregradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - PregradoPublicationORIGINALRIU-PRE-2024 Investigacion desercion escolar.pdfRIU-PRE-2024 Investigacion desercion escolar.pdfapplication/pdf468965https://repositorio.uniremington.edu.co/bitstreams/55951d9a-b6cd-40f7-8102-e043f0818a15/download68910e447823615f21497a0f74e6b813MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uniremington.edu.co/bitstreams/2b8c5321-c988-4b2a-b7cc-ebc1a47dd090/download8a4605be74aa9ea9d79846c1fba20a33MD52BL-FR-11 Cesión Derechos_TG .pdfapplication/pdf369381https://repositorio.uniremington.edu.co/bitstreams/afe46301-e0fc-4ed1-a2aa-c59dbbbb5631/download81931ce67faee26e646fe5526024f253MD53TEXTRIU-PRE-2024 Investigacion desercion escolar.pdf.txtRIU-PRE-2024 Investigacion desercion escolar.pdf.txtExtracted texttext/plain43020https://repositorio.uniremington.edu.co/bitstreams/8dc1a158-2f17-4324-93db-0e97ae2f9d17/downloadcd2276a42020285e8fb8c9c1764b4387MD54THUMBNAILRIU-PRE-2024 Investigacion desercion escolar.pdf.jpgRIU-PRE-2024 Investigacion desercion escolar.pdf.jpgGenerated Thumbnailimage/jpeg3287https://repositorio.uniremington.edu.co/bitstreams/bd0566ed-a13e-4720-86fa-65d7431d748e/download862a7629ef913d7746884807cac38915MD55123456789/2130oai:repositorio.uniremington.edu.co:123456789/21302024-06-19 16:47:59.951https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Corporación Universitaria Remington, 2024open.accesshttps://repositorio.uniremington.edu.coRepositorio UNIREMINGTONbiblioteca@uniremington.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |