El machine learning en academias de educación vial
En este proyecto, se exploraron varios temas relacionados con la evaluación y supervisión de procesos en sistemas de información apoyados por el Aprendizaje Automático. Se aplicó el Aprendizaje Automático en Academias de Educación Vial para mejorar la gestión de la enseñanza y la evaluación de los c...
- Autores:
-
Enríquez Quintero, Niyileth Karina
Bautista Villamizar, Laura Valentina
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universitaria Remington
- Repositorio:
- Repositorio institucional Uniremington
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniremington.edu.co:123456789/2040
- Acceso en línea:
- https://repositorio.uniremington.edu.co/handle/123456789/2040
- Palabra clave:
- Machine Learning
Inteligencia artificial
Aprendizaje supervisado
Aprendizaje no supervisado
Python
Rstudio
Innovación tecnológica
Big Data
Pirámide de valor de los datos
Variable objetivo
Regresión
Clasificación
Academia de enseñanza automovilística
Vehículo de enseñanza
Aprendizaje automático (Inteligencia artificial)
Aprendizaje supervisado (Aprendizaje automático)
Inteligencia artificial
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
URemingtn2_78dd0b55a336ae0634e7d25dec5249fc |
---|---|
oai_identifier_str |
oai:repositorio.uniremington.edu.co:123456789/2040 |
network_acronym_str |
URemingtn2 |
network_name_str |
Repositorio institucional Uniremington |
repository_id_str |
|
dc.title.spa.fl_str_mv |
El machine learning en academias de educación vial |
title |
El machine learning en academias de educación vial |
spellingShingle |
El machine learning en academias de educación vial Machine Learning Inteligencia artificial Aprendizaje supervisado Aprendizaje no supervisado Python Rstudio Innovación tecnológica Big Data Pirámide de valor de los datos Variable objetivo Regresión Clasificación Academia de enseñanza automovilística Vehículo de enseñanza Aprendizaje automático (Inteligencia artificial) Aprendizaje supervisado (Aprendizaje automático) Inteligencia artificial |
title_short |
El machine learning en academias de educación vial |
title_full |
El machine learning en academias de educación vial |
title_fullStr |
El machine learning en academias de educación vial |
title_full_unstemmed |
El machine learning en academias de educación vial |
title_sort |
El machine learning en academias de educación vial |
dc.creator.fl_str_mv |
Enríquez Quintero, Niyileth Karina Bautista Villamizar, Laura Valentina |
dc.contributor.advisor.none.fl_str_mv |
Vélez Uribe, Juan Pablo |
dc.contributor.author.none.fl_str_mv |
Enríquez Quintero, Niyileth Karina Bautista Villamizar, Laura Valentina |
dc.subject.spa.fl_str_mv |
Machine Learning Inteligencia artificial Aprendizaje supervisado Aprendizaje no supervisado Python Rstudio Innovación tecnológica Big Data Pirámide de valor de los datos Variable objetivo Regresión Clasificación Academia de enseñanza automovilística Vehículo de enseñanza |
topic |
Machine Learning Inteligencia artificial Aprendizaje supervisado Aprendizaje no supervisado Python Rstudio Innovación tecnológica Big Data Pirámide de valor de los datos Variable objetivo Regresión Clasificación Academia de enseñanza automovilística Vehículo de enseñanza Aprendizaje automático (Inteligencia artificial) Aprendizaje supervisado (Aprendizaje automático) Inteligencia artificial |
dc.subject.lemb.none.fl_str_mv |
Aprendizaje automático (Inteligencia artificial) Aprendizaje supervisado (Aprendizaje automático) Inteligencia artificial |
description |
En este proyecto, se exploraron varios temas relacionados con la evaluación y supervisión de procesos en sistemas de información apoyados por el Aprendizaje Automático. Se aplicó el Aprendizaje Automático en Academias de Educación Vial para mejorar la gestión de la enseñanza y la evaluación de los conductores, centrándose en la predicción del consumo de combustible de los vehículos de enseñanza para optimizar los recursos y reducir los costes. La introducción al Aprendizaje Automático destacó su capacidad de aprender sin programación explícita, utilizando datos para mejorar continuamente el rendimiento del sistema. Se abordaron conceptos como el aprendizaje supervisado y no supervisado, junto con la importancia de la Ciencia de Datos. En el análisis de datos de las Academias de Educación Vial, se exploró cómo el Aprendizaje Automático puede identificar patrones en el rendimiento de los alumnos, personalizando la instrucción y contribuyendo a la automatización, especialmente en el control eficiente del combustible. Se presentó el concepto de Big Data como principal insumo para las aplicaciones de Aprendizaje Automático, generando información valiosa para la toma de decisiones estratégicas. También se hizo hincapié en la importancia de una buena estrategia de datos y en la pirámide de valor de los datos. En el mundo de la ciencia de datos, el Aprendizaje Automático se ha convertido en un cambio de juego, revolucionando la forma en que abordamos problemas complejos. Sin embargo, con la creciente complejidad de los modelos, la necesidad de interpretabilidad e inferencia causal se ha vuelto más crítica que nunca. Para hacer frente a esto, se han desarrollado varios algoritmos, como Propensity Score, Double LASSO, Causal Trees y Causal Forest, para mejorar la interpretación de los modelos y permitir una toma de decisiones informada. Estos algoritmos se centran en comprender la causalidad y la correlación, que son esenciales para desarrollar modelos sólidos. El proceso de evaluación de los modelos de Aprendizaje Automático es un paso crucial en este ámbito. Implica comprender el problema empresarial, preparar y modelar los datos, evaluar el rendimiento del modelo y finalizarlo. La preparación de los datos implica utilizar herramientas como pandas en Python, emplear técnicas como MinMaxScaler y get_dummies, y asegurarse de que los datos están limpios y listos para el análisis. Se hace hincapié en el entrenamiento de modelos y la selección de algoritmos, junto con métricas de rendimiento como las matrices de confusión, la exactitud, la precisión, el recuerdo y otras. Las técnicas de validación cruzada son esenciales para una sólida selección de modelos, y el aprendizaje supervisado mediante conjuntos de datos etiquetados se utiliza para entrenar algoritmos. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-19T15:26:48Z |
dc.date.available.none.fl_str_mv |
2024-01-19T15:26:48Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uniremington.edu.co/handle/123456789/2040 |
url |
https://repositorio.uniremington.edu.co/handle/123456789/2040 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Corporación Universitaria Remington, 2024 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) Derechos Reservados - Corporación Universitaria Remington, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
60 p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universitaria Remington |
dc.publisher.place.spa.fl_str_mv |
Medellín (Antioquia, Colombia) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.program.spa.fl_str_mv |
Tecnología en Desarrollo de Software |
institution |
Corporación Universitaria Remington |
bitstream.url.fl_str_mv |
https://repositorio.uniremington.edu.co/bitstreams/3fe4a133-ad7c-4924-b8bf-529e0f311207/download https://repositorio.uniremington.edu.co/bitstreams/a813088f-592e-4fa6-9646-e2ca72e75c69/download https://repositorio.uniremington.edu.co/bitstreams/dc89fe0c-8be8-457f-8b6d-e2146f9060c6/download https://repositorio.uniremington.edu.co/bitstreams/6dcaba85-064c-4cd6-b7bc-66a91d883e33/download https://repositorio.uniremington.edu.co/bitstreams/c28ec426-f5a9-45b2-8eb3-7fc5caa4ff6a/download |
bitstream.checksum.fl_str_mv |
c13f2a7417e05c38707dafaf83fadd09 8a4605be74aa9ea9d79846c1fba20a33 59b2507735084e13593a69f950e532eb e70f620a3ed30fc4781a48bc30623f45 fe98332fec923d5d72ac237b574b6262 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UNIREMINGTON |
repository.mail.fl_str_mv |
biblioteca@uniremington.edu.co |
_version_ |
1812100425220882432 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos Reservados - Corporación Universitaria Remington, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vélez Uribe, Juan PabloEnríquez Quintero, Niyileth KarinaBautista Villamizar, Laura Valentina2024-01-19T15:26:48Z2024-01-19T15:26:48Z2023https://repositorio.uniremington.edu.co/handle/123456789/2040En este proyecto, se exploraron varios temas relacionados con la evaluación y supervisión de procesos en sistemas de información apoyados por el Aprendizaje Automático. Se aplicó el Aprendizaje Automático en Academias de Educación Vial para mejorar la gestión de la enseñanza y la evaluación de los conductores, centrándose en la predicción del consumo de combustible de los vehículos de enseñanza para optimizar los recursos y reducir los costes. La introducción al Aprendizaje Automático destacó su capacidad de aprender sin programación explícita, utilizando datos para mejorar continuamente el rendimiento del sistema. Se abordaron conceptos como el aprendizaje supervisado y no supervisado, junto con la importancia de la Ciencia de Datos. En el análisis de datos de las Academias de Educación Vial, se exploró cómo el Aprendizaje Automático puede identificar patrones en el rendimiento de los alumnos, personalizando la instrucción y contribuyendo a la automatización, especialmente en el control eficiente del combustible. Se presentó el concepto de Big Data como principal insumo para las aplicaciones de Aprendizaje Automático, generando información valiosa para la toma de decisiones estratégicas. También se hizo hincapié en la importancia de una buena estrategia de datos y en la pirámide de valor de los datos. En el mundo de la ciencia de datos, el Aprendizaje Automático se ha convertido en un cambio de juego, revolucionando la forma en que abordamos problemas complejos. Sin embargo, con la creciente complejidad de los modelos, la necesidad de interpretabilidad e inferencia causal se ha vuelto más crítica que nunca. Para hacer frente a esto, se han desarrollado varios algoritmos, como Propensity Score, Double LASSO, Causal Trees y Causal Forest, para mejorar la interpretación de los modelos y permitir una toma de decisiones informada. Estos algoritmos se centran en comprender la causalidad y la correlación, que son esenciales para desarrollar modelos sólidos. El proceso de evaluación de los modelos de Aprendizaje Automático es un paso crucial en este ámbito. Implica comprender el problema empresarial, preparar y modelar los datos, evaluar el rendimiento del modelo y finalizarlo. La preparación de los datos implica utilizar herramientas como pandas en Python, emplear técnicas como MinMaxScaler y get_dummies, y asegurarse de que los datos están limpios y listos para el análisis. Se hace hincapié en el entrenamiento de modelos y la selección de algoritmos, junto con métricas de rendimiento como las matrices de confusión, la exactitud, la precisión, el recuerdo y otras. Las técnicas de validación cruzada son esenciales para una sólida selección de modelos, y el aprendizaje supervisado mediante conjuntos de datos etiquetados se utiliza para entrenar algoritmos.TecnologíaTecnólogo(a) en Desarrollo de Software60 p.application/pdfspaCorporación Universitaria RemingtonMedellín (Antioquia, Colombia)Facultad de IngenieríasTecnología en Desarrollo de SoftwareMachine LearningInteligencia artificialAprendizaje supervisadoAprendizaje no supervisadoPythonRstudioInnovación tecnológicaBig DataPirámide de valor de los datosVariable objetivoRegresiónClasificaciónAcademia de enseñanza automovilísticaVehículo de enseñanzaAprendizaje automático (Inteligencia artificial)Aprendizaje supervisado (Aprendizaje automático)Inteligencia artificialEl machine learning en academias de educación vialTrabajo de grado - Pregradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - PregradoPublicationORIGINALRIU-PRE-2023 Machine learning academias.pdfRIU-PRE-2023 Machine learning academias.pdfapplication/pdf1081376https://repositorio.uniremington.edu.co/bitstreams/3fe4a133-ad7c-4924-b8bf-529e0f311207/downloadc13f2a7417e05c38707dafaf83fadd09MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uniremington.edu.co/bitstreams/a813088f-592e-4fa6-9646-e2ca72e75c69/download8a4605be74aa9ea9d79846c1fba20a33MD52BL-FR-11 Cesión Derechos_TG (1).Laura y Niyileth.pdfapplication/pdf222288https://repositorio.uniremington.edu.co/bitstreams/dc89fe0c-8be8-457f-8b6d-e2146f9060c6/download59b2507735084e13593a69f950e532ebMD53TEXTRIU-PRE-2023 Machine learning academias.pdf.txtRIU-PRE-2023 Machine learning academias.pdf.txtExtracted texttext/plain101611https://repositorio.uniremington.edu.co/bitstreams/6dcaba85-064c-4cd6-b7bc-66a91d883e33/downloade70f620a3ed30fc4781a48bc30623f45MD54THUMBNAILRIU-PRE-2023 Machine learning academias.pdf.jpgRIU-PRE-2023 Machine learning academias.pdf.jpgGenerated Thumbnailimage/jpeg2479https://repositorio.uniremington.edu.co/bitstreams/c28ec426-f5a9-45b2-8eb3-7fc5caa4ff6a/downloadfe98332fec923d5d72ac237b574b6262MD55123456789/2040oai:repositorio.uniremington.edu.co:123456789/20402024-06-06 13:38:46.623https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Corporación Universitaria Remington, 2024open.accesshttps://repositorio.uniremington.edu.coRepositorio UNIREMINGTONbiblioteca@uniremington.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |