Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning

La llegada de las tecnologías de la información y las comunicaciones (TIC) en el siglo XX abrió una nueva etapa, denominada "sociedad del conocimiento y la información", que ha tenido un impacto significativo en las prácticas educativas y sociales. La Inteligencia Artificial (IA), una rama...

Full description

Autores:
García Ramírez, Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Corporación Universitaria Remington
Repositorio:
Repositorio institucional Uniremington
Idioma:
spa
OAI Identifier:
oai:repositorio.uniremington.edu.co:123456789/2663
Acceso en línea:
https://repositorio.uniremington.edu.co/handle/123456789/2663
Palabra clave:
Osteoporosis
Datasets
Análisis de datos
Machine learning
Clasificación
Regresión
Modelo MLP
Clustering
Inteligencia artificial (IA)
Algoritmos
Salud digital
eSalud
Ciber salud
Asistencia virtual
Dispositivos inteligentes
Demografía
Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
Osteoporosis
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id URemingtn2_749eb6961643ec7de80189ada6994efe
oai_identifier_str oai:repositorio.uniremington.edu.co:123456789/2663
network_acronym_str URemingtn2
network_name_str Repositorio institucional Uniremington
repository_id_str
dc.title.spa.fl_str_mv Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning
title Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning
spellingShingle Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning
Osteoporosis
Datasets
Análisis de datos
Machine learning
Clasificación
Regresión
Modelo MLP
Clustering
Inteligencia artificial (IA)
Algoritmos
Salud digital
eSalud
Ciber salud
Asistencia virtual
Dispositivos inteligentes
Demografía
Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
Osteoporosis
title_short Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning
title_full Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning
title_fullStr Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning
title_full_unstemmed Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning
title_sort Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning
dc.creator.fl_str_mv García Ramírez, Sebastián
dc.contributor.advisor.none.fl_str_mv Briñez de León, Juan Carlos
dc.contributor.author.none.fl_str_mv García Ramírez, Sebastián
dc.subject.spa.fl_str_mv Osteoporosis
Datasets
Análisis de datos
Machine learning
Clasificación
Regresión
Modelo MLP
Clustering
Inteligencia artificial (IA)
Algoritmos
Salud digital
eSalud
Ciber salud
Asistencia virtual
Dispositivos inteligentes
Demografía
topic Osteoporosis
Datasets
Análisis de datos
Machine learning
Clasificación
Regresión
Modelo MLP
Clustering
Inteligencia artificial (IA)
Algoritmos
Salud digital
eSalud
Ciber salud
Asistencia virtual
Dispositivos inteligentes
Demografía
Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
Osteoporosis
dc.subject.lemb.none.fl_str_mv Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
Osteoporosis
description La llegada de las tecnologías de la información y las comunicaciones (TIC) en el siglo XX abrió una nueva etapa, denominada "sociedad del conocimiento y la información", que ha tenido un impacto significativo en las prácticas educativas y sociales. La Inteligencia Artificial (IA), una rama de las TIC, que actualmente busca aplicaciones en sectores como la salud, emulando el razonamiento humano, el aprendizaje, la resolución de problemas y la percepción. El desarrollo de estrategias computacionales basadas en algoritmos de machine learning (ML) ha sido impulsado por la OMS y enfocándolo en La osteoporosis un trastorno esquelético de alto impacto socioeconómico. Estos algoritmos se entrenan con datos demográficos, de estilo de vida y de salud para identificar personas en riesgo rápidamente. El procesamiento de datos implica cargar conjuntos de datos en plataformas como Colab, eliminar filas y columnas innecesarias y duplicados, y normalizar datos categóricos. Variables como el género, los cambios hormonales, los antecedentes familiares, la actividad física y el consumo de sustancias se analizan. El modelo de toma de decisiones, que se basa en el aprendizaje supervisado, utiliza un algoritmo para clasificar a las personas en riesgo en función de patrones que se encuentran en los datos de entrenamiento. Esto implica recopilar y procesar datos de pacientes, elegir los algoritmos de clasificación apropiados y entrenar el modelo. Un conjunto de datos de prueba se utiliza para evaluar el modelo para comprender su rendimiento y factores de impacto. El objetivo de la implementación de esta estrategia computacional es mejorar el diagnóstico, la prevención y el tratamiento individualizado de la osteoporosis. Esta estrategia podría usarse en herramientas de diagnóstico, selección de tratamiento, modelos de riesgos y campañas de concientización.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-16T13:05:06Z
dc.date.available.none.fl_str_mv 2024-04-16T13:05:06Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.uniremington.edu.co/handle/123456789/2663
url https://repositorio.uniremington.edu.co/handle/123456789/2663
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Derechos Reservados - Corporación Universitaria Remington, 2024
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Derechos Reservados - Corporación Universitaria Remington, 2024
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 40 p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universitaria Remington
dc.publisher.place.spa.fl_str_mv Medellín (Antioquia, Colombia)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
dc.publisher.program.spa.fl_str_mv Tecnología en Desarrollo de Software
institution Corporación Universitaria Remington
bitstream.url.fl_str_mv https://repositorio.uniremington.edu.co/bitstreams/5c505028-2225-42dd-ada9-1d5c43e05549/download
https://repositorio.uniremington.edu.co/bitstreams/3e1ed7a9-adad-4557-9fe3-f38f64120edc/download
https://repositorio.uniremington.edu.co/bitstreams/77c3a123-42bd-459c-bf92-eab0933a627e/download
https://repositorio.uniremington.edu.co/bitstreams/66fb6eb7-1a5f-4663-bb46-82ec05d80078/download
https://repositorio.uniremington.edu.co/bitstreams/0c1a39c5-cbe4-4d7f-b8d5-f018a1d86acd/download
bitstream.checksum.fl_str_mv 10ac7ccabcfedca001f627bd9f692bf0
8a4605be74aa9ea9d79846c1fba20a33
40f3627c21fe88678aac23e6399da8d2
b6aafe81a1e58a253bbb41532a76be8b
5e83d46058291bba9cafd8131f0d1620
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UNIREMINGTON
repository.mail.fl_str_mv biblioteca@uniremington.edu.co
_version_ 1812100418197520384
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos Reservados - Corporación Universitaria Remington, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Briñez de León, Juan CarlosGarcía Ramírez, Sebastián2024-04-16T13:05:06Z2024-04-16T13:05:06Z2024https://repositorio.uniremington.edu.co/handle/123456789/2663La llegada de las tecnologías de la información y las comunicaciones (TIC) en el siglo XX abrió una nueva etapa, denominada "sociedad del conocimiento y la información", que ha tenido un impacto significativo en las prácticas educativas y sociales. La Inteligencia Artificial (IA), una rama de las TIC, que actualmente busca aplicaciones en sectores como la salud, emulando el razonamiento humano, el aprendizaje, la resolución de problemas y la percepción. El desarrollo de estrategias computacionales basadas en algoritmos de machine learning (ML) ha sido impulsado por la OMS y enfocándolo en La osteoporosis un trastorno esquelético de alto impacto socioeconómico. Estos algoritmos se entrenan con datos demográficos, de estilo de vida y de salud para identificar personas en riesgo rápidamente. El procesamiento de datos implica cargar conjuntos de datos en plataformas como Colab, eliminar filas y columnas innecesarias y duplicados, y normalizar datos categóricos. Variables como el género, los cambios hormonales, los antecedentes familiares, la actividad física y el consumo de sustancias se analizan. El modelo de toma de decisiones, que se basa en el aprendizaje supervisado, utiliza un algoritmo para clasificar a las personas en riesgo en función de patrones que se encuentran en los datos de entrenamiento. Esto implica recopilar y procesar datos de pacientes, elegir los algoritmos de clasificación apropiados y entrenar el modelo. Un conjunto de datos de prueba se utiliza para evaluar el modelo para comprender su rendimiento y factores de impacto. El objetivo de la implementación de esta estrategia computacional es mejorar el diagnóstico, la prevención y el tratamiento individualizado de la osteoporosis. Esta estrategia podría usarse en herramientas de diagnóstico, selección de tratamiento, modelos de riesgos y campañas de concientización.TecnologíaTecnólogo(a) en Desarrollo de Software40 p.application/pdfspaCorporación Universitaria RemingtonMedellín (Antioquia, Colombia)Facultad de IngenieríasTecnología en Desarrollo de SoftwareOsteoporosisDatasetsAnálisis de datosMachine learningClasificaciónRegresiónModelo MLPClusteringInteligencia artificial (IA)AlgoritmosSalud digitaleSaludCiber saludAsistencia virtualDispositivos inteligentesDemografíaAprendizaje automático (Inteligencia artificial)Toma de decisionesOsteoporosisAlgoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learningTrabajo de grado - Pregradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - PregradoPublicationORIGINALRIU-PRE-2024 Algoritmo computacional analisis.pdfRIU-PRE-2024 Algoritmo computacional analisis.pdfapplication/pdf569369https://repositorio.uniremington.edu.co/bitstreams/5c505028-2225-42dd-ada9-1d5c43e05549/download10ac7ccabcfedca001f627bd9f692bf0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uniremington.edu.co/bitstreams/3e1ed7a9-adad-4557-9fe3-f38f64120edc/download8a4605be74aa9ea9d79846c1fba20a33MD52Cesión Derechos_TG 11.pdfapplication/pdf305701https://repositorio.uniremington.edu.co/bitstreams/77c3a123-42bd-459c-bf92-eab0933a627e/download40f3627c21fe88678aac23e6399da8d2MD53TEXTRIU-PRE-2024 Algoritmo computacional analisis.pdf.txtRIU-PRE-2024 Algoritmo computacional analisis.pdf.txtExtracted texttext/plain46785https://repositorio.uniremington.edu.co/bitstreams/66fb6eb7-1a5f-4663-bb46-82ec05d80078/downloadb6aafe81a1e58a253bbb41532a76be8bMD54THUMBNAILRIU-PRE-2024 Algoritmo computacional analisis.pdf.jpgRIU-PRE-2024 Algoritmo computacional analisis.pdf.jpgGenerated Thumbnailimage/jpeg3112https://repositorio.uniremington.edu.co/bitstreams/0c1a39c5-cbe4-4d7f-b8d5-f018a1d86acd/download5e83d46058291bba9cafd8131f0d1620MD55123456789/2663oai:repositorio.uniremington.edu.co:123456789/26632024-06-06 13:38:46.521https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Corporación Universitaria Remington, 2024open.accesshttps://repositorio.uniremington.edu.coRepositorio UNIREMINGTONbiblioteca@uniremington.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=