Algoritmo computacional para el análisis y toma de decisiones en datos de osteoporosis, utilizando estrategias de machine learning

La llegada de las tecnologías de la información y las comunicaciones (TIC) en el siglo XX abrió una nueva etapa, denominada "sociedad del conocimiento y la información", que ha tenido un impacto significativo en las prácticas educativas y sociales. La Inteligencia Artificial (IA), una rama...

Full description

Autores:
García Ramírez, Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Corporación Universitaria Remington
Repositorio:
Repositorio institucional Uniremington
Idioma:
spa
OAI Identifier:
oai:repositorio.uniremington.edu.co:123456789/2663
Acceso en línea:
https://repositorio.uniremington.edu.co/handle/123456789/2663
Palabra clave:
Osteoporosis
Datasets
Análisis de datos
Machine learning
Clasificación
Regresión
Modelo MLP
Clustering
Inteligencia artificial (IA)
Algoritmos
Salud digital
eSalud
Ciber salud
Asistencia virtual
Dispositivos inteligentes
Demografía
Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
Osteoporosis
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Description
Summary:La llegada de las tecnologías de la información y las comunicaciones (TIC) en el siglo XX abrió una nueva etapa, denominada "sociedad del conocimiento y la información", que ha tenido un impacto significativo en las prácticas educativas y sociales. La Inteligencia Artificial (IA), una rama de las TIC, que actualmente busca aplicaciones en sectores como la salud, emulando el razonamiento humano, el aprendizaje, la resolución de problemas y la percepción. El desarrollo de estrategias computacionales basadas en algoritmos de machine learning (ML) ha sido impulsado por la OMS y enfocándolo en La osteoporosis un trastorno esquelético de alto impacto socioeconómico. Estos algoritmos se entrenan con datos demográficos, de estilo de vida y de salud para identificar personas en riesgo rápidamente. El procesamiento de datos implica cargar conjuntos de datos en plataformas como Colab, eliminar filas y columnas innecesarias y duplicados, y normalizar datos categóricos. Variables como el género, los cambios hormonales, los antecedentes familiares, la actividad física y el consumo de sustancias se analizan. El modelo de toma de decisiones, que se basa en el aprendizaje supervisado, utiliza un algoritmo para clasificar a las personas en riesgo en función de patrones que se encuentran en los datos de entrenamiento. Esto implica recopilar y procesar datos de pacientes, elegir los algoritmos de clasificación apropiados y entrenar el modelo. Un conjunto de datos de prueba se utiliza para evaluar el modelo para comprender su rendimiento y factores de impacto. El objetivo de la implementación de esta estrategia computacional es mejorar el diagnóstico, la prevención y el tratamiento individualizado de la osteoporosis. Esta estrategia podría usarse en herramientas de diagnóstico, selección de tratamiento, modelos de riesgos y campañas de concientización.