Algoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learning
Actualmente nos encontramos en la era de los datos, muchas empresas por bastante tiempo contaron con un excelente manejo de sus procesos, pero debido a que el mundo sigue en constante cambio las entidades se han visto obligadas a utilizar nuevas técnicas e implementar métodos digitales para que sus...
- Autores:
-
Leguizamo Rodríguez, Daryl Giselle
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universitaria Remington
- Repositorio:
- Repositorio institucional Uniremington
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniremington.edu.co:123456789/2641
- Acceso en línea:
- https://repositorio.uniremington.edu.co/handle/123456789/2641
- Palabra clave:
- Base de datos
Machine learning
Algoritmo
Inteligencia artificial
Técnica
Aprendizaje automático (Inteligencia artificial)
Inteligencia artificial
Bases de datos en línea
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
URemingtn2_0b2e7272f1a08f811241d0beec39d7ae |
---|---|
oai_identifier_str |
oai:repositorio.uniremington.edu.co:123456789/2641 |
network_acronym_str |
URemingtn2 |
network_name_str |
Repositorio institucional Uniremington |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Algoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learning |
title |
Algoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learning |
spellingShingle |
Algoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learning Base de datos Machine learning Algoritmo Inteligencia artificial Técnica Aprendizaje automático (Inteligencia artificial) Inteligencia artificial Bases de datos en línea |
title_short |
Algoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learning |
title_full |
Algoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learning |
title_fullStr |
Algoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learning |
title_full_unstemmed |
Algoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learning |
title_sort |
Algoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learning |
dc.creator.fl_str_mv |
Leguizamo Rodríguez, Daryl Giselle |
dc.contributor.advisor.none.fl_str_mv |
Briñez de León, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Leguizamo Rodríguez, Daryl Giselle |
dc.subject.spa.fl_str_mv |
Base de datos Machine learning Algoritmo Inteligencia artificial Técnica |
topic |
Base de datos Machine learning Algoritmo Inteligencia artificial Técnica Aprendizaje automático (Inteligencia artificial) Inteligencia artificial Bases de datos en línea |
dc.subject.lemb.none.fl_str_mv |
Aprendizaje automático (Inteligencia artificial) Inteligencia artificial Bases de datos en línea |
description |
Actualmente nos encontramos en la era de los datos, muchas empresas por bastante tiempo contaron con un excelente manejo de sus procesos, pero debido a que el mundo sigue en constante cambio las entidades se han visto obligadas a utilizar nuevas técnicas e implementar métodos digitales para que sus empresas puedan ampliarse y llegar a mayor público. Sin embargo, todos esos datos recolectados con el tiempo pueden aportar información clave y relevante que brinde ayuda para mejorar o comprender como se maneja la entidad y con que utilidades puede disponer para brindar un servicio de calidad. Por esa razón, el objetivo de este trabajo de grado es dejar en manifiesto como el aprendizaje automático más conocido también como el Machine Learning puede contribuir a la toma de decisiones en estos tiempos actuales de datos. Se quiere demostrar que podemos sacar provecho de la era digital para nuestro beneficio, con ayuda de la inteligencia artificial, el Machine Learning usaremos todas las variables y los datos integrando las herramientas o algoritmos de esta inteligencia para sacar posibles conclusiones y resultados que aporten a la entidad de manera constructiva. Se utilizará una base de datos para realizar el desglose de la información y tener un análisis detallado de las variables para tomar una decisión en base a los resultados. Esta base de datos es de una empresa que tiene como objetivo entregar pedidos de alimentos en línea, usaremos técnicas del Machine Learning para consultar la información, obtener como se dividen los datos y que aspectos se toman en cuenta en la entidad de entrega de pedidos de alimentos en línea. Además, se evaluará como estas variables se relacionan entre sí y que puede aportarnos del comportamiento que ejerce la entidad en su lugar de operación, al analizar estos datos a profundidad podemos implementar la técnica de Machine Learning mencionada anteriormente. Esta técnica denominada “aprendizaje no supervisado (agrupación)” tiene como objetivo brindar resultados que estén orientados a mejorar la producción de la entidad o relacionar como las variables se parecen entre sí con miras a la toma de futuras decisiones. Por ende, se visualizará como al integrar nuevos registros a la base de datos después de usar un método de segmentación, los datos se reparten y nos genera una predicción de en qué agrupación de la información corresponde y como esto nos da una idea del manejo de la entidad y su relación entre sí. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-12T19:20:56Z |
dc.date.available.none.fl_str_mv |
2024-04-12T19:20:56Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uniremington.edu.co/handle/123456789/2641 |
url |
https://repositorio.uniremington.edu.co/handle/123456789/2641 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Corporación Universitaria Remington, 2024 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) Derechos Reservados - Corporación Universitaria Remington, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
32 p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universitaria Remington |
dc.publisher.place.spa.fl_str_mv |
Medellín (Antioquia, Colombia) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.program.spa.fl_str_mv |
Tecnología en Desarrollo de Software |
institution |
Corporación Universitaria Remington |
bitstream.url.fl_str_mv |
https://repositorio.uniremington.edu.co/bitstreams/25c0d57f-8bb0-49e0-98fb-ab6453a4488d/download https://repositorio.uniremington.edu.co/bitstreams/97e8459b-3597-4e39-9794-1367284cf82f/download https://repositorio.uniremington.edu.co/bitstreams/00234afd-3ec5-470a-9b14-1ddd48f572f9/download https://repositorio.uniremington.edu.co/bitstreams/d6e4779f-4e14-4c41-a87f-9d67a0a343ff/download https://repositorio.uniremington.edu.co/bitstreams/c49d92c3-868c-4742-811c-cb5f0417b8a2/download |
bitstream.checksum.fl_str_mv |
edba98f0c2e68c9a6c1cd30a2cf18af5 8a4605be74aa9ea9d79846c1fba20a33 3216d87ab3024f9585a149165f88fe55 9e6a22b6efdbc7b3495c8a8ade6cdd37 c45a7e4c267d83bbaefc93cd78dcbe60 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UNIREMINGTON |
repository.mail.fl_str_mv |
biblioteca@uniremington.edu.co |
_version_ |
1812100409466028032 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos Reservados - Corporación Universitaria Remington, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Briñez de León, Juan CarlosLeguizamo Rodríguez, Daryl Giselle2024-04-12T19:20:56Z2024-04-12T19:20:56Z2024https://repositorio.uniremington.edu.co/handle/123456789/2641Actualmente nos encontramos en la era de los datos, muchas empresas por bastante tiempo contaron con un excelente manejo de sus procesos, pero debido a que el mundo sigue en constante cambio las entidades se han visto obligadas a utilizar nuevas técnicas e implementar métodos digitales para que sus empresas puedan ampliarse y llegar a mayor público. Sin embargo, todos esos datos recolectados con el tiempo pueden aportar información clave y relevante que brinde ayuda para mejorar o comprender como se maneja la entidad y con que utilidades puede disponer para brindar un servicio de calidad. Por esa razón, el objetivo de este trabajo de grado es dejar en manifiesto como el aprendizaje automático más conocido también como el Machine Learning puede contribuir a la toma de decisiones en estos tiempos actuales de datos. Se quiere demostrar que podemos sacar provecho de la era digital para nuestro beneficio, con ayuda de la inteligencia artificial, el Machine Learning usaremos todas las variables y los datos integrando las herramientas o algoritmos de esta inteligencia para sacar posibles conclusiones y resultados que aporten a la entidad de manera constructiva. Se utilizará una base de datos para realizar el desglose de la información y tener un análisis detallado de las variables para tomar una decisión en base a los resultados. Esta base de datos es de una empresa que tiene como objetivo entregar pedidos de alimentos en línea, usaremos técnicas del Machine Learning para consultar la información, obtener como se dividen los datos y que aspectos se toman en cuenta en la entidad de entrega de pedidos de alimentos en línea. Además, se evaluará como estas variables se relacionan entre sí y que puede aportarnos del comportamiento que ejerce la entidad en su lugar de operación, al analizar estos datos a profundidad podemos implementar la técnica de Machine Learning mencionada anteriormente. Esta técnica denominada “aprendizaje no supervisado (agrupación)” tiene como objetivo brindar resultados que estén orientados a mejorar la producción de la entidad o relacionar como las variables se parecen entre sí con miras a la toma de futuras decisiones. Por ende, se visualizará como al integrar nuevos registros a la base de datos después de usar un método de segmentación, los datos se reparten y nos genera una predicción de en qué agrupación de la información corresponde y como esto nos da una idea del manejo de la entidad y su relación entre sí.TecnologíaTecnólogo(a) en Desarrollo de Software32 p.application/pdfspaCorporación Universitaria RemingtonMedellín (Antioquia, Colombia)Facultad de IngenieríasTecnología en Desarrollo de SoftwareBase de datosMachine learningAlgoritmoInteligencia artificialTécnicaAprendizaje automático (Inteligencia artificial)Inteligencia artificialBases de datos en líneaAlgoritmo computacional para el análisis y toma de decisiones en datos de pedidos de alimentos en línea, utilizando estrategias de machine learningTrabajo de grado - Pregradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - PregradoPublicationORIGINALRIU-PRE-2024 Algoritmo computacional analisis.pdfRIU-PRE-2024 Algoritmo computacional analisis.pdfapplication/pdf1026476https://repositorio.uniremington.edu.co/bitstreams/25c0d57f-8bb0-49e0-98fb-ab6453a4488d/downloadedba98f0c2e68c9a6c1cd30a2cf18af5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uniremington.edu.co/bitstreams/97e8459b-3597-4e39-9794-1367284cf82f/download8a4605be74aa9ea9d79846c1fba20a33MD52Cesión Derechos_TG.pdfapplication/pdf205015https://repositorio.uniremington.edu.co/bitstreams/00234afd-3ec5-470a-9b14-1ddd48f572f9/download3216d87ab3024f9585a149165f88fe55MD53TEXTRIU-PRE-2024 Algoritmo computacional analisis.pdf.txtRIU-PRE-2024 Algoritmo computacional analisis.pdf.txtExtracted texttext/plain33427https://repositorio.uniremington.edu.co/bitstreams/d6e4779f-4e14-4c41-a87f-9d67a0a343ff/download9e6a22b6efdbc7b3495c8a8ade6cdd37MD54THUMBNAILRIU-PRE-2024 Algoritmo computacional analisis.pdf.jpgRIU-PRE-2024 Algoritmo computacional analisis.pdf.jpgGenerated Thumbnailimage/jpeg3287https://repositorio.uniremington.edu.co/bitstreams/c49d92c3-868c-4742-811c-cb5f0417b8a2/downloadc45a7e4c267d83bbaefc93cd78dcbe60MD55123456789/2641oai:repositorio.uniremington.edu.co:123456789/26412024-06-06 13:38:46.414https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Corporación Universitaria Remington, 2024open.accesshttps://repositorio.uniremington.edu.coRepositorio UNIREMINGTONbiblioteca@uniremington.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |