Conjuntos de Sidón en dimensión dos

Un subconjunto A de enteros positivos se denomina conjunto de Sidon si todas las sumas de dos elementos son distintas, excepto cuando coinciden por conmutatividad. Si en lugar de tomar sumas de dos elementos, consideramos sumas de h elementos, los conjuntos se denominan Bh. Esta definición también s...

Full description

Autores:
Caicedo Bravo, Nidia Yadira
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2016
Institución:
Universidad del Valle
Repositorio:
Repositorio Digital Univalle
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.univalle.edu.co:10893/14870
Acceso en línea:
https://hdl.handle.net/10893/14870
Palabra clave:
Conjunto de Sidón
Secuencias Sonar
Reglas de Golomb
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
Description
Summary:Un subconjunto A de enteros positivos se denomina conjunto de Sidon si todas las sumas de dos elementos son distintas, excepto cuando coinciden por conmutatividad. Si en lugar de tomar sumas de dos elementos, consideramos sumas de h elementos, los conjuntos se denominan Bh. Esta definición también se puede extender a un grupo abeliano arbitrario. En esta tesis realizamos un amplio estudio sobre las construcciones de conjuntos de Sidon en una y dos dimensiones. En el caso de conjuntos de Sidon en dos dimensiones, presentamos tres construcciones que son subconjuntos de los grupos provenientes de un campo arbitrario. Además analizamos sus propiedades y describimos algunas propiedades que no se conocían. Como las secuencias sonar corresponden a funciones cuyo grafo es un conjunto de Sidon, uno de nuestros aportes más importante (en el caso de conjuntos de Sidon en dos dimensiones) es el diseño de nuevas construcciones de secuencias sonar obtenidas a partir de conjuntos de Sidon en una dimensión. Uno de los problemas principales en el estudio de conjuntos de Sidon en una o varias dimensiones es encontrar conjuntos de Sidon maximales; es decir, se busca el valor exacto de la función.