Métricas conformes con curvatura escalar y curvatura media prescritas.

El objetivo general del proyecto fue contribuir a la solución del problema fundamental de geometría conocido como el problema de la deformación conforme de métricas en variedades a una métrica con curvatura escalar prescrita k en el caso de variedades sin frontera, o a una métrica con curvatura esca...

Full description

Autores:
García Camacho, Gonzalo
Posada Vera, Liliana
Tipo de recurso:
Informe
Fecha de publicación:
2018
Institución:
Universidad del Valle
Repositorio:
Repositorio Digital Univalle
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.univalle.edu.co:10893/11112
Acceso en línea:
https://hdl.handle.net/10893/11112
Palabra clave:
Geometría
Métricas
Curvatura escalar
Curvatura media
Deformación conforme
Solución de problemas (Matemáticas)
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIVALLE2_da957a3916bcbdf3d6d52ac5752a1c9d
oai_identifier_str oai:bibliotecadigital.univalle.edu.co:10893/11112
network_acronym_str UNIVALLE2
network_name_str Repositorio Digital Univalle
repository_id_str
dc.title.spa.fl_str_mv Métricas conformes con curvatura escalar y curvatura media prescritas.
title Métricas conformes con curvatura escalar y curvatura media prescritas.
spellingShingle Métricas conformes con curvatura escalar y curvatura media prescritas.
Geometría
Métricas
Curvatura escalar
Curvatura media
Deformación conforme
Solución de problemas (Matemáticas)
title_short Métricas conformes con curvatura escalar y curvatura media prescritas.
title_full Métricas conformes con curvatura escalar y curvatura media prescritas.
title_fullStr Métricas conformes con curvatura escalar y curvatura media prescritas.
title_full_unstemmed Métricas conformes con curvatura escalar y curvatura media prescritas.
title_sort Métricas conformes con curvatura escalar y curvatura media prescritas.
dc.creator.fl_str_mv García Camacho, Gonzalo
Posada Vera, Liliana
dc.contributor.author.none.fl_str_mv García Camacho, Gonzalo
Posada Vera, Liliana
dc.subject.spa.fl_str_mv Geometría
Métricas
Curvatura escalar
Curvatura media
Deformación conforme
Solución de problemas (Matemáticas)
topic Geometría
Métricas
Curvatura escalar
Curvatura media
Deformación conforme
Solución de problemas (Matemáticas)
description El objetivo general del proyecto fue contribuir a la solución del problema fundamental de geometría conocido como el problema de la deformación conforme de métricas en variedades a una métrica con curvatura escalar prescrita k en el caso de variedades sin frontera, o a una métrica con curvatura escalar prescrita k sobre M y curvatura media prescrita h sobre la frontera de M, en el caso de variedades con frontera. Una métrica ĝ es conforme a la métrica g si ĝ= fg donde f es una función suave positiva definida en la variedad M.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-04-23T20:08:25Z
dc.date.available.none.fl_str_mv 2018-04-23T20:08:25Z
dc.date.issued.none.fl_str_mv 2018-04-23
dc.type.spa.fl_str_mv Informe de investigación
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/report
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/INF
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_93fc
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10893/11112
url https://hdl.handle.net/10893/11112
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
institution Universidad del Valle
bitstream.url.fl_str_mv https://bibliotecadigital.univalle.edu.co/bitstreams/5550018b-72d9-43c6-9b95-f21d3fba1d6c/download
https://bibliotecadigital.univalle.edu.co/bitstreams/ad34c74c-efca-49d8-b605-e2ede2e85d09/download
https://bibliotecadigital.univalle.edu.co/bitstreams/766d31a5-24e1-488e-95ef-0d4a28e0f57c/download
https://bibliotecadigital.univalle.edu.co/bitstreams/e9e7a537-027e-4665-94b1-5fad19fbb8e7/download
bitstream.checksum.fl_str_mv 7e0e55bf7a82c3a92e0f799b914d387f
003bbe6c751461d9b64be34926c6c4c1
ca53f409bad0e7091305e55b8ee98291
86ff6d276b9109a1685a4b7c4996b2c8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad del Valle
repository.mail.fl_str_mv admin.bibdigital@correounivalle.edu.co
_version_ 1814168081631543296
spelling García Camacho, Gonzalo40f9fb0c-605f-467f-a681-4bd21e76fb93-1Posada Vera, Lilianab6942783-25af-41a6-a2b1-657f6f8701fa-12018-04-23T20:08:25Z2018-04-23T20:08:25Z2018-04-23https://hdl.handle.net/10893/11112El objetivo general del proyecto fue contribuir a la solución del problema fundamental de geometría conocido como el problema de la deformación conforme de métricas en variedades a una métrica con curvatura escalar prescrita k en el caso de variedades sin frontera, o a una métrica con curvatura escalar prescrita k sobre M y curvatura media prescrita h sobre la frontera de M, en el caso de variedades con frontera. Una métrica ĝ es conforme a la métrica g si ĝ= fg donde f es una función suave positiva definida en la variedad M.spaGeometríaMétricasCurvatura escalarCurvatura mediaDeformación conformeSolución de problemas (Matemáticas)Métricas conformes con curvatura escalar y curvatura media prescritas.Informe de investigaciónhttp://purl.org/coar/resource_type/c_93fcTextinfo:eu-repo/semantics/reporthttps://purl.org/redcol/resource_type/INFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL7920 Gonzalo García.pdf7920 Gonzalo García.pdfapplication/pdf312152https://bibliotecadigital.univalle.edu.co/bitstreams/5550018b-72d9-43c6-9b95-f21d3fba1d6c/download7e0e55bf7a82c3a92e0f799b914d387fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84474https://bibliotecadigital.univalle.edu.co/bitstreams/ad34c74c-efca-49d8-b605-e2ede2e85d09/download003bbe6c751461d9b64be34926c6c4c1MD52TEXT7920 Gonzalo García.pdf.txt7920 Gonzalo García.pdf.txtExtracted texttext/plain16250https://bibliotecadigital.univalle.edu.co/bitstreams/766d31a5-24e1-488e-95ef-0d4a28e0f57c/downloadca53f409bad0e7091305e55b8ee98291MD53THUMBNAIL7920 Gonzalo García.pdf.jpg7920 Gonzalo García.pdf.jpgGenerated Thumbnailimage/jpeg14845https://bibliotecadigital.univalle.edu.co/bitstreams/e9e7a537-027e-4665-94b1-5fad19fbb8e7/download86ff6d276b9109a1685a4b7c4996b2c8MD5410893/11112oai:bibliotecadigital.univalle.edu.co:10893/111122023-08-17 13:20:27.689open.accesshttps://bibliotecadigital.univalle.edu.coRepositorio Institucional Universidad del Valleadmin.bibdigital@correounivalle.edu.coQVVUT1JJWkFDSe+/ve+/ve+/ve+/ve+/ve+/vU4gUEFSQSBQVUJMSUNBQ0nvv73vv73vv73vv73vv73vv71OCkRJR0lUQUwgREUgT0JSQVMKClBBUlRFIDEuIFTvv73vv73vv73vv73vv73vv71ybWlub3MgZGUgbGEgbGljZW5jaWEgZ2VuZXJhbCBwYXJhIHB1YmxpY2Fjae+/ve+/ve+/ve+/ve+/ve+/vW4gZGlnaXRhbCBkZSBvYnJhcyBlbiBlbApyZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIGRlIEFjdWVyZG8gYSBsYSBQb2zvv73vv73vv73vv73vv73vv710aWNhIGRlIFByb3BpZWRhZCBJbnRlbGVjdHVhbCBkZSBsYQpVbml2ZXJzaWRhZCBkZWwgVmFsbGUKQWN0dWFuZG8gZW4gbm9tYnJlIHByb3BpbyBsb3MgQVVUT1JFUyBvIFRJVFVMQVJFUyBkZWwgZGVyZWNobyBkZSBhdXRvciBjb25maWVyZW4gYSBsYQpVTklWRVJTSURBRCBERUwgVkFMTEUgdW5hIExpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZQppbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3Rlcu+/ve+/ve+/ve+/ve+/ve+/vXN0aWNhczoKYSkgRXN0YXLvv73vv73vv73vv73vv73vv70gdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSBlbiBxdWUgc2UgaW5jbHV5ZSBlbiBlbCBSZXBvc2l0b3JpbywgcG9yIHVuIHBsYXpvIGRlIGNpbmNvCig1KSBh77+977+977+977+977+977+9b3MsIHF1ZSBzZXLvv73vv73vv73vv73vv73vv71uIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsCmRlbCBBVVRPUiBvIEFVVE9SRVMuIEVsIEFVVE9SIG8gQVVUT1JFUyBwb2Ry77+977+977+977+977+977+9biBkYXIgcG9yIHRlcm1pbmFkYSBsYSBsaWNlbmNpYQpzb2xpY2l0YW5kbyBwb3IgZXNjcml0byBhIGxhIFVOSVZFUlNJREFEIERFTCBWQUxMRSBjb24gdW5hIGFudGVsYWNp77+977+977+977+977+977+9biBkZSBkb3MgKDIpIG1lc2VzCmFudGVzIGRlIGxhIGNvcnJlc3BvbmRpZW50ZSBwcu+/ve+/ve+/ve+/ve+/ve+/vXJyb2dhLgpiKSBFbCBBVVRPUiBvIEFVVE9SRVMgYXV0b3JpemFuIGEgbGEgVU5JVkVSU0lEQUQgREVMIFZBTExFIHBhcmEgcXVlIGVuIGxvcyB077+977+977+977+977+977+9cm1pbm9zCmVzdGFibGVjaWRvcyBlbiBlbCBBY3VlcmRvIDAyMyBkZSAyMDAzIGVtYW5hZG8gZGVsIENvbnNlam8gU3VwZXJpb3IgZGUgbGEgVW5pdmVyc2lkYWQgZGVsClZhbGxlLCBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzae+/ve+/ve+/ve+/ve+/ve+/vW4gQW5kaW5hIDM1MSBkZSAxOTkzIHkgZGVt77+977+977+977+977+977+9cyBub3JtYXMKZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHB1YmxpcXVlIGxhIG9icmEgZW4gZWwgZm9ybWF0byBxdWUgZWwgUmVwb3NpdG9yaW8gbG8gcmVxdWllcmEKKGltcHJlc28sIGRpZ2l0YWwsIGVsZWN0cu+/ve+/ve+/ve+/ve+/ve+/vW5pY28sIO+/ve+/ve+/ve+/ve+/ve+/vXB0aWNvLCB1c29zIGVuIHJlZCBvIGN1YWxxdWllciBvdHJvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIpIHkKY29ub2NlbiBxdWUgZGFkbyBxdWUgc2UgcHVibGljYSBlbiBJbnRlcm5ldCBwb3IgZXN0ZSBoZWNobyBjaXJjdWxhIGNvbiB1biBhbGNhbmNlIG11bmRpYWwuCmMpIEVsIEFVVE9SIG8gQVVUT1JFUyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNp77+977+977+977+977+977+9biBzZSBoYWNlIGEgdO+/ve+/ve+/ve+/ve+/ve+/vXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bwpyZW51bmNpYW4gYSByZWNpYmlyIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nvv73vv73vv73vv73vv73vv71uLCBkaXN0cmlidWNp77+977+977+977+977+977+9biwgY29tdW5pY2Fjae+/ve+/ve+/ve+/ve+/ve+/vW4gcO+/ve+/ve+/ve+/ve+/ve+/vWJsaWNhIHkKY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB077+977+977+977+977+977+9cm1pbm9zIGRlIGxhIHByZXNlbnRlIExpY2VuY2lhIHkgZGUgbGEgTGljZW5jaWEKQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuCmQpIEVsIEFVVE9SIG8gQVVUT1JFUyBtYW5pZmllc3RhbiBxdWUgc2UgdHJhdGEgZGUgdW5hIG9icmEgb3JpZ2luYWwgeSBsYSByZWFsaXrvv73vv73vv73vv73vv73vv70gbyByZWFsaXphcm9uCnNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBvYnJhIHNvYnJlIGxhIHF1ZSB0aWVuZSAobikgbG9zIGRlcmVjaG9zIHF1ZQphdXRvcml6YSAobikgeSBxdWUgZXMg77+977+977+977+977+977+9bCBvIGVsbG9zIHF1aWVuZXMgYXN1bWVuIHRvdGFsIHJlc3BvbnNhYmlsaWRhZCBwb3IgZWwgY29udGVuaWRvIGRlIHN1Cm9icmEgYW50ZSBsYSBVTklWRVJTSURBRCBERUwgVkFMTEUgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVU5JVkVSU0lEQUQgREVMClZBTExFIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3Lvv73vv73vv73vv73vv73vv71hIGluY2x1eWVuZG8gZWwgbm9tYnJlIGRlbCBBVVRPUiBvCkFVVE9SRVMgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nvv73vv73vv73vv73vv73vv71uLiBQYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIFVOSVZFUlNJREFEIERFTCBWQUxMRQphY3Tvv73vv73vv73vv73vv73vv71hIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBm77+977+977+977+977+977+9LgplKSBFbCBBVVRPUiBvIEFVVE9SRVMgYXV0b3JpemFuIGEgbGEgVU5JVkVSU0lEQUQgREVMIFZBTExFIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcwrvv73vv73vv73vv73vv73vv71uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nvv73vv73vv73vv73vv73vv71uLiBFbCBBVVRPUiBvCkFVVE9SRVMgYWNlcHRhbiBxdWUgbGEgVU5JVkVSU0lEQUQgREVMIFZBTExFIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYQpjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcO+/ve+/ve+/ve+/ve+/ve+/vXNpdG9zIGRlIHByZXNlcnZhY2nvv73vv73vv73vv73vv73vv71uIGRpZ2l0YWwuClNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTwpBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJ77+977+977+977+977+977+9TiwgQ09OIEVYQ0VQQ0nvv73vv73vv73vv73vv73vv71OIERFIExBClVOSVZFUlNJREFEIERFTCBWQUxMRSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OCkxPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8KQUNVRVJETy4KClBBUlRFIDIuIEF1dG9yaXphY2nvv73vv73vv73vv73vv73vv71uIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbApSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLgpDb24gYmFzZSBlbiBlc3RlIGRvY3VtZW50bywgVXN0ZWQgYXV0b3JpemEgbGEgcHVibGljYWNp77+977+977+977+977+977+9biBlbGVjdHLvv73vv73vv73vv73vv73vv71uaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBzdQpvYnJhIHBvciBsYSBVTklWRVJTSURBRCBERUwgVkFMTEUgeSBzdXMgdXN1YXJpb3MgZGUgbGEgc2lndWllbnRlIG1hbmVyYTsKYS4gVXN0ZWQgb3RvcmdhIHVuYSAoMSkgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nvv73vv73vv73vv73vv73vv71uIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvCmluc3RpdHVjaW9uYWwgZGUgbGEgVU5JVkVSU0lEQUQgREVMIFZBTExFIChQYXJ0ZSAxKSBxdWUgZm9ybWEgcGFydGUgaW50ZWdyYWwgZGVsIHByZXNlbnRlCmRvY3VtZW50byB5IGRlIGxhIHF1ZSBoYSByZWNpYmlkbyB1bmEgKDEpIGNvcGlhLgoKYi4gVXN0ZWQgYXV0b3JpemEgcGFyYSBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNp77+977+977+977+977+977+9biBkZWwgcO+/ve+/ve+/ve+/ve+/ve+/vWJsaWNvIGVuIGxvcyB077+977+977+977+977+977+9cm1pbm9zCmF1dG9yaXphZG9zIHBvciBVc3RlZCBlbiBsb3MgbGl0ZXJhbGVzIGEpLCB5IGIpLCBjb24gbGEgTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucwpSZWNvbm9jaW1pZW50byAtIE5vIGNvbWVyY2lhbCAtIFNpbiBvYnJhcyBkZXJpdmFkYXMgMi41IENvbG9tYmlhIGN1eW8gdGV4dG8gY29tcGxldG8gc2UKcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzIuNS9jby8geSBxdWUgYWRtaXRlIGNvbm9jZXIuCg==