Application of basic optics principles for the determination of effective limits of numerical diffraction methods

(Eng) The range of application of the methods of angular spectrum and Fresnel-Fraunhofer transform to compute numerical diffraction is evaluated via the basic optics concepts of Babinet´s principle and Frenel´s zones number. Conventionally, such limit is determined by assessing the correct sampling...

Full description

Autores:
Castañeda, Raúl
Garcia Sucerquia, Jorge
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad del Valle
Repositorio:
Repositorio Digital Univalle
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.univalle.edu.co:10893/18353
Acceso en línea:
https://hdl.handle.net/10893/18353
Palabra clave:
Teoría de difracción
Holografía digital
Propagación numérica
Diffraction theory
Digital holography
Numerical propagation
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
Description
Summary:(Eng) The range of application of the methods of angular spectrum and Fresnel-Fraunhofer transform to compute numerical diffraction is evaluated via the basic optics concepts of Babinet´s principle and Frenel´s zones number. Conventionally, such limit is determined by assessing the correct sampling of the impulse response of the free space for each method as it evolves from the aperture to infinity. In this paper we make combined use of Babinet´s principle and Fresnel´s zones number to determine the phase that an optical wave field must exhibit after being propagated a given distance; the deviation of the phase of the optical field from the forecasted value is the metric utilized for testing the validity of the propagation method. The results show that the limit of application of the methods angular spectrum and Fresnel-Fraunhofer transform must be revisited. We propose a new limit that accounts for the number of pixels utilized for the correct sampling of a phase jump.