Buena colocación local y estudio numérico de una ecuación tipo Kadomtsev-Petviashvili (KPI) con coeficientes variables

En este trabajo se considera una ecuación bi-dimensional tipo Kadomtsev- Petviashvili (GKPI) con coeficientes dependientes del tiempo y se demuestra la buena colocación local del problema de Cauchy, en el caso de dominio espacial periódico. Para este mismo problema se logra demostrar una importarte...

Full description

Autores:
Loaiza Motato, Gerardo Arturo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad del Valle
Repositorio:
Repositorio Digital Univalle
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.univalle.edu.co:10893/32114
Acceso en línea:
https://hdl.handle.net/10893/32114
Palabra clave:
Ecuaciones diferenciales
Ecuación de Kadomtsev-Petviashvili
Problema de Cauchy
Matemáticas
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
Description
Summary:En este trabajo se considera una ecuación bi-dimensional tipo Kadomtsev- Petviashvili (GKPI) con coeficientes dependientes del tiempo y se demuestra la buena colocación local del problema de Cauchy, en el caso de dominio espacial periódico. Para este mismo problema se logra demostrar una importarte ley de conservación. Se plantea además una propuesta numérica, basada en elementos finitos lineales, sobre un espacio mixto para la discretización espacial, y un método implícito para la correspondiente discretización temporal. También se establece una propuesta numérica para la aproximación numérica de las soluciones de la ecuación GKPI estudiada en un dominio rectangular en el plano y sobre un dominio planar periódico.