Análisis de puntos críticos y curvatura en modelos matemáticos para membranas y placas.
El proyecto es complemento del proyecto de investigación "Análisis cualitativo en modelos para membranas y placas". En este proyecto se pretende continuar con el análisis de la estructura del conjunto de puntos críticos de las soluciones del modelo de deformación de placas (Modelo P) y mod...
- Autores:
-
Arango Cabarcas, Jaime Alfonso
Gómez, Adriana
Delgado, Jairo Andrés
Salazar, Andrés Mauricio
Trejos Olmos, Jonathan Augusto
- Tipo de recurso:
- Informe
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Valle
- Repositorio:
- Repositorio Digital Univalle
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.univalle.edu.co:10893/14494
- Acceso en línea:
- https://hdl.handle.net/10893/14494
- Palabra clave:
- Puntos críticos
Ecuaciones Elípticas
Membranas
Placas
Curvatura
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNIVALLE2_76a7a8da76bb08ded9ff13970183ed2f |
---|---|
oai_identifier_str |
oai:bibliotecadigital.univalle.edu.co:10893/14494 |
network_acronym_str |
UNIVALLE2 |
network_name_str |
Repositorio Digital Univalle |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis de puntos críticos y curvatura en modelos matemáticos para membranas y placas. |
title |
Análisis de puntos críticos y curvatura en modelos matemáticos para membranas y placas. |
spellingShingle |
Análisis de puntos críticos y curvatura en modelos matemáticos para membranas y placas. Puntos críticos Ecuaciones Elípticas Membranas Placas Curvatura |
title_short |
Análisis de puntos críticos y curvatura en modelos matemáticos para membranas y placas. |
title_full |
Análisis de puntos críticos y curvatura en modelos matemáticos para membranas y placas. |
title_fullStr |
Análisis de puntos críticos y curvatura en modelos matemáticos para membranas y placas. |
title_full_unstemmed |
Análisis de puntos críticos y curvatura en modelos matemáticos para membranas y placas. |
title_sort |
Análisis de puntos críticos y curvatura en modelos matemáticos para membranas y placas. |
dc.creator.fl_str_mv |
Arango Cabarcas, Jaime Alfonso Gómez, Adriana Delgado, Jairo Andrés Salazar, Andrés Mauricio Trejos Olmos, Jonathan Augusto |
dc.contributor.author.none.fl_str_mv |
Arango Cabarcas, Jaime Alfonso Gómez, Adriana Delgado, Jairo Andrés Salazar, Andrés Mauricio Trejos Olmos, Jonathan Augusto |
dc.subject.spa.fl_str_mv |
Puntos críticos Ecuaciones Elípticas Membranas Placas Curvatura |
topic |
Puntos críticos Ecuaciones Elípticas Membranas Placas Curvatura |
description |
El proyecto es complemento del proyecto de investigación "Análisis cualitativo en modelos para membranas y placas". En este proyecto se pretende continuar con el análisis de la estructura del conjunto de puntos críticos de las soluciones del modelo de deformación de placas (Modelo P) y modelo de deformación de membranas (Modelo M). En particular se pretendían abordar las cuestiones de si los puntos críticos de las soluciones se acumulan en el borde del dominio y de cómo se comporta la curvatura de las curvas de nivel. Investigaciones previas de los investigadores permiten concluir que en el caso de los dominios circulares los puntos críticos no se acumulan para el caso del modelo P y que la curvatura de las curvas de nivel de las soluciones es una función continua hasta el borde del dominio. En el presente proyecto se esperaba poder generalizar estos resultados a otros dominios. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-10-30T20:25:50Z |
dc.date.available.none.fl_str_mv |
2019-10-30T20:25:50Z |
dc.date.issued.none.fl_str_mv |
2019-10-30 |
dc.type.spa.fl_str_mv |
Informe de investigación |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_93fc |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/report |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/INF |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_93fc |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10893/14494 |
url |
https://hdl.handle.net/10893/14494 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
institution |
Universidad del Valle |
bitstream.url.fl_str_mv |
https://bibliotecadigital.univalle.edu.co/bitstreams/d5b00f69-7ace-43bc-bf55-f4e7a5f493c7/download https://bibliotecadigital.univalle.edu.co/bitstreams/35e312ec-1936-4a92-af6e-c8e1b1702295/download https://bibliotecadigital.univalle.edu.co/bitstreams/7d4c6e5a-6bc7-4743-b78a-cbfeaff7faab/download https://bibliotecadigital.univalle.edu.co/bitstreams/e208f546-5005-40e5-b291-735b138b547c/download |
bitstream.checksum.fl_str_mv |
94e9874a8d013c55ce022d59f5fbcf6d 003bbe6c751461d9b64be34926c6c4c1 b308b7fe5c1c2bbdc0cb686d451b84aa c03ace89d0a17482f334840ba7e85d0b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad del Valle |
repository.mail.fl_str_mv |
admin.bibdigital@correounivalle.edu.co |
_version_ |
1814167929948733440 |
spelling |
Arango Cabarcas, Jaime Alfonsoc3acd30d-0c28-441a-b072-d2867e64e616-1Gómez, Adriana36515ca7-fe6e-4932-8f60-d73c7780bbec-1Delgado, Jairo Andrés14617090-bcf6-499f-9225-021ca85f82b2-1Salazar, Andrés Mauricio8b2eea56-680b-4e66-9fd3-9adf9d6cb2bd-1Trejos Olmos, Jonathan Augustob849a564-5d3a-4c94-a88a-28bf404a8743-12019-10-30T20:25:50Z2019-10-30T20:25:50Z2019-10-30https://hdl.handle.net/10893/14494El proyecto es complemento del proyecto de investigación "Análisis cualitativo en modelos para membranas y placas". En este proyecto se pretende continuar con el análisis de la estructura del conjunto de puntos críticos de las soluciones del modelo de deformación de placas (Modelo P) y modelo de deformación de membranas (Modelo M). En particular se pretendían abordar las cuestiones de si los puntos críticos de las soluciones se acumulan en el borde del dominio y de cómo se comporta la curvatura de las curvas de nivel. Investigaciones previas de los investigadores permiten concluir que en el caso de los dominios circulares los puntos críticos no se acumulan para el caso del modelo P y que la curvatura de las curvas de nivel de las soluciones es una función continua hasta el borde del dominio. En el presente proyecto se esperaba poder generalizar estos resultados a otros dominios.spaPuntos críticosEcuaciones ElípticasMembranasPlacasCurvaturaAnálisis de puntos críticos y curvatura en modelos matemáticos para membranas y placas.Informe de investigaciónhttp://purl.org/coar/resource_type/c_93fcTextinfo:eu-repo/semantics/reporthttps://purl.org/redcol/resource_type/INFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINAL71021 Jaime Arango.pdf71021 Jaime Arango.pdfapplication/pdf587175https://bibliotecadigital.univalle.edu.co/bitstreams/d5b00f69-7ace-43bc-bf55-f4e7a5f493c7/download94e9874a8d013c55ce022d59f5fbcf6dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84474https://bibliotecadigital.univalle.edu.co/bitstreams/35e312ec-1936-4a92-af6e-c8e1b1702295/download003bbe6c751461d9b64be34926c6c4c1MD52TEXT71021 Jaime Arango.pdf.txt71021 Jaime Arango.pdf.txtExtracted texttext/plain11https://bibliotecadigital.univalle.edu.co/bitstreams/7d4c6e5a-6bc7-4743-b78a-cbfeaff7faab/downloadb308b7fe5c1c2bbdc0cb686d451b84aaMD53THUMBNAIL71021 Jaime Arango.pdf.jpg71021 Jaime Arango.pdf.jpgGenerated Thumbnailimage/jpeg15850https://bibliotecadigital.univalle.edu.co/bitstreams/e208f546-5005-40e5-b291-735b138b547c/downloadc03ace89d0a17482f334840ba7e85d0bMD5410893/14494oai:bibliotecadigital.univalle.edu.co:10893/144942023-08-17 12:01:43.759open.accesshttps://bibliotecadigital.univalle.edu.coRepositorio Institucional Universidad del Valleadmin.bibdigital@correounivalle.edu.coQVVUT1JJWkFDSe+/ve+/ve+/ve+/ve+/ve+/vU4gUEFSQSBQVUJMSUNBQ0nvv73vv73vv73vv73vv73vv71OCkRJR0lUQUwgREUgT0JSQVMKClBBUlRFIDEuIFTvv73vv73vv73vv73vv73vv71ybWlub3MgZGUgbGEgbGljZW5jaWEgZ2VuZXJhbCBwYXJhIHB1YmxpY2Fjae+/ve+/ve+/ve+/ve+/ve+/vW4gZGlnaXRhbCBkZSBvYnJhcyBlbiBlbApyZXBvc2l0b3JpbyBpbnN0aXR1Y2lvbmFsIGRlIEFjdWVyZG8gYSBsYSBQb2zvv73vv73vv73vv73vv73vv710aWNhIGRlIFByb3BpZWRhZCBJbnRlbGVjdHVhbCBkZSBsYQpVbml2ZXJzaWRhZCBkZWwgVmFsbGUKQWN0dWFuZG8gZW4gbm9tYnJlIHByb3BpbyBsb3MgQVVUT1JFUyBvIFRJVFVMQVJFUyBkZWwgZGVyZWNobyBkZSBhdXRvciBjb25maWVyZW4gYSBsYQpVTklWRVJTSURBRCBERUwgVkFMTEUgdW5hIExpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZQppbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3Rlcu+/ve+/ve+/ve+/ve+/ve+/vXN0aWNhczoKYSkgRXN0YXLvv73vv73vv73vv73vv73vv70gdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSBlbiBxdWUgc2UgaW5jbHV5ZSBlbiBlbCBSZXBvc2l0b3JpbywgcG9yIHVuIHBsYXpvIGRlIGNpbmNvCig1KSBh77+977+977+977+977+977+9b3MsIHF1ZSBzZXLvv73vv73vv73vv73vv73vv71uIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsCmRlbCBBVVRPUiBvIEFVVE9SRVMuIEVsIEFVVE9SIG8gQVVUT1JFUyBwb2Ry77+977+977+977+977+977+9biBkYXIgcG9yIHRlcm1pbmFkYSBsYSBsaWNlbmNpYQpzb2xpY2l0YW5kbyBwb3IgZXNjcml0byBhIGxhIFVOSVZFUlNJREFEIERFTCBWQUxMRSBjb24gdW5hIGFudGVsYWNp77+977+977+977+977+977+9biBkZSBkb3MgKDIpIG1lc2VzCmFudGVzIGRlIGxhIGNvcnJlc3BvbmRpZW50ZSBwcu+/ve+/ve+/ve+/ve+/ve+/vXJyb2dhLgpiKSBFbCBBVVRPUiBvIEFVVE9SRVMgYXV0b3JpemFuIGEgbGEgVU5JVkVSU0lEQUQgREVMIFZBTExFIHBhcmEgcXVlIGVuIGxvcyB077+977+977+977+977+977+9cm1pbm9zCmVzdGFibGVjaWRvcyBlbiBlbCBBY3VlcmRvIDAyMyBkZSAyMDAzIGVtYW5hZG8gZGVsIENvbnNlam8gU3VwZXJpb3IgZGUgbGEgVW5pdmVyc2lkYWQgZGVsClZhbGxlLCBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzae+/ve+/ve+/ve+/ve+/ve+/vW4gQW5kaW5hIDM1MSBkZSAxOTkzIHkgZGVt77+977+977+977+977+977+9cyBub3JtYXMKZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHB1YmxpcXVlIGxhIG9icmEgZW4gZWwgZm9ybWF0byBxdWUgZWwgUmVwb3NpdG9yaW8gbG8gcmVxdWllcmEKKGltcHJlc28sIGRpZ2l0YWwsIGVsZWN0cu+/ve+/ve+/ve+/ve+/ve+/vW5pY28sIO+/ve+/ve+/ve+/ve+/ve+/vXB0aWNvLCB1c29zIGVuIHJlZCBvIGN1YWxxdWllciBvdHJvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIpIHkKY29ub2NlbiBxdWUgZGFkbyBxdWUgc2UgcHVibGljYSBlbiBJbnRlcm5ldCBwb3IgZXN0ZSBoZWNobyBjaXJjdWxhIGNvbiB1biBhbGNhbmNlIG11bmRpYWwuCmMpIEVsIEFVVE9SIG8gQVVUT1JFUyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNp77+977+977+977+977+977+9biBzZSBoYWNlIGEgdO+/ve+/ve+/ve+/ve+/ve+/vXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bwpyZW51bmNpYW4gYSByZWNpYmlyIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nvv73vv73vv73vv73vv73vv71uLCBkaXN0cmlidWNp77+977+977+977+977+977+9biwgY29tdW5pY2Fjae+/ve+/ve+/ve+/ve+/ve+/vW4gcO+/ve+/ve+/ve+/ve+/ve+/vWJsaWNhIHkKY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB077+977+977+977+977+977+9cm1pbm9zIGRlIGxhIHByZXNlbnRlIExpY2VuY2lhIHkgZGUgbGEgTGljZW5jaWEKQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuCmQpIEVsIEFVVE9SIG8gQVVUT1JFUyBtYW5pZmllc3RhbiBxdWUgc2UgdHJhdGEgZGUgdW5hIG9icmEgb3JpZ2luYWwgeSBsYSByZWFsaXrvv73vv73vv73vv73vv73vv70gbyByZWFsaXphcm9uCnNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBvYnJhIHNvYnJlIGxhIHF1ZSB0aWVuZSAobikgbG9zIGRlcmVjaG9zIHF1ZQphdXRvcml6YSAobikgeSBxdWUgZXMg77+977+977+977+977+977+9bCBvIGVsbG9zIHF1aWVuZXMgYXN1bWVuIHRvdGFsIHJlc3BvbnNhYmlsaWRhZCBwb3IgZWwgY29udGVuaWRvIGRlIHN1Cm9icmEgYW50ZSBsYSBVTklWRVJTSURBRCBERUwgVkFMTEUgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVU5JVkVSU0lEQUQgREVMClZBTExFIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3Lvv73vv73vv73vv73vv73vv71hIGluY2x1eWVuZG8gZWwgbm9tYnJlIGRlbCBBVVRPUiBvCkFVVE9SRVMgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nvv73vv73vv73vv73vv73vv71uLiBQYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIFVOSVZFUlNJREFEIERFTCBWQUxMRQphY3Tvv73vv73vv73vv73vv73vv71hIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBm77+977+977+977+977+977+9LgplKSBFbCBBVVRPUiBvIEFVVE9SRVMgYXV0b3JpemFuIGEgbGEgVU5JVkVSU0lEQUQgREVMIFZBTExFIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcwrvv73vv73vv73vv73vv73vv71uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nvv73vv73vv73vv73vv73vv71uLiBFbCBBVVRPUiBvCkFVVE9SRVMgYWNlcHRhbiBxdWUgbGEgVU5JVkVSU0lEQUQgREVMIFZBTExFIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYQpjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcO+/ve+/ve+/ve+/ve+/ve+/vXNpdG9zIGRlIHByZXNlcnZhY2nvv73vv73vv73vv73vv73vv71uIGRpZ2l0YWwuClNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTwpBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJ77+977+977+977+977+977+9TiwgQ09OIEVYQ0VQQ0nvv73vv73vv73vv73vv73vv71OIERFIExBClVOSVZFUlNJREFEIERFTCBWQUxMRSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OCkxPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8KQUNVRVJETy4KClBBUlRFIDIuIEF1dG9yaXphY2nvv73vv73vv73vv73vv73vv71uIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbApSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLgpDb24gYmFzZSBlbiBlc3RlIGRvY3VtZW50bywgVXN0ZWQgYXV0b3JpemEgbGEgcHVibGljYWNp77+977+977+977+977+977+9biBlbGVjdHLvv73vv73vv73vv73vv73vv71uaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBzdQpvYnJhIHBvciBsYSBVTklWRVJTSURBRCBERUwgVkFMTEUgeSBzdXMgdXN1YXJpb3MgZGUgbGEgc2lndWllbnRlIG1hbmVyYTsKYS4gVXN0ZWQgb3RvcmdhIHVuYSAoMSkgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nvv73vv73vv73vv73vv73vv71uIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvCmluc3RpdHVjaW9uYWwgZGUgbGEgVU5JVkVSU0lEQUQgREVMIFZBTExFIChQYXJ0ZSAxKSBxdWUgZm9ybWEgcGFydGUgaW50ZWdyYWwgZGVsIHByZXNlbnRlCmRvY3VtZW50byB5IGRlIGxhIHF1ZSBoYSByZWNpYmlkbyB1bmEgKDEpIGNvcGlhLgoKYi4gVXN0ZWQgYXV0b3JpemEgcGFyYSBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNp77+977+977+977+977+977+9biBkZWwgcO+/ve+/ve+/ve+/ve+/ve+/vWJsaWNvIGVuIGxvcyB077+977+977+977+977+977+9cm1pbm9zCmF1dG9yaXphZG9zIHBvciBVc3RlZCBlbiBsb3MgbGl0ZXJhbGVzIGEpLCB5IGIpLCBjb24gbGEgTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucwpSZWNvbm9jaW1pZW50byAtIE5vIGNvbWVyY2lhbCAtIFNpbiBvYnJhcyBkZXJpdmFkYXMgMi41IENvbG9tYmlhIGN1eW8gdGV4dG8gY29tcGxldG8gc2UKcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzIuNS9jby8geSBxdWUgYWRtaXRlIGNvbm9jZXIuCg== |