Métodos de regresión no paramétrica.
La esencia del texto está en intentar comunicar de la manera más amigable posible, sin perder rigurosidad, un conjunto de técnicas que amplían las ideas generales del análisis de regresión. En cuanto a la rigurosidad, los lectores deben estar preparados en ideas básicas de cálculo, álgebra lineal, i...
- Autores:
-
Olaya Ochoa, Javier
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Valle
- Repositorio:
- Repositorio Digital Univalle
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.univalle.edu.co:10893/20181
- Acceso en línea:
- https://hdl.handle.net/10893/20181
- Palabra clave:
- Modelos lineales (Estadística)
Estadísticas no paramétricas
Análisis de regresión (Estadística)
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
Summary: | La esencia del texto está en intentar comunicar de la manera más amigable posible, sin perder rigurosidad, un conjunto de técnicas que amplían las ideas generales del análisis de regresión. En cuanto a la rigurosidad, los lectores deben estar preparados en ideas básicas de cálculo, álgebra lineal, inferencia estadística paramétrica y no paramétrica y modelos lineales. Este texto se concentra en el problema de la regresión no paramétrica vista desde diferentes ángulos. El lector encontrará aquí un resumen de los métodos de regresión no paramétrica que se usan con mayor frecuencia, incluyendo la regresión kernel, la suavización spline y la regresión lineal local, siguiendo todos a una introducción a los estimadores de series que presenta las ideas centrales de los métodos. |
---|