Diseño de un sistema de pronósticos en redes neuronales artificiales para la demanda de acumuladores de plomo en una empresa del sector autopartes
Los pronósticos son esenciales en toda organización para la toma de decisiones debido a que influyen en el logro de los objetivos de diversas áreas como la producción, mercadeo, inventarios, compras, entre otros. Por lo tanto, este trabajo estudia la aplicabilidad de las redes neuronales artificiale...
- Autores:
-
Jiménez Canticus, Leidy Johana
Quijano Echeverry, Andrés Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Valle
- Repositorio:
- Repositorio Digital Univalle
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.univalle.edu.co:10893/18201
- Acceso en línea:
- https://hdl.handle.net/10893/18201
- Palabra clave:
- Pronóstico de la demanda
Redes neuronales artificiales
Perceptrones
Acumuladores de plomo
Sector autopartes
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
Summary: | Los pronósticos son esenciales en toda organización para la toma de decisiones debido a que influyen en el logro de los objetivos de diversas áreas como la producción, mercadeo, inventarios, compras, entre otros. Por lo tanto, este trabajo estudia la aplicabilidad de las redes neuronales artificiales como método para la estimación del pronóstico de la demanda, como una alternativa que ha demostrado en diferentes investigaciones tener mejor desempeño que los métodos tradicionales de series de tiempo. La investigación se desarrolla en una empresa catalogada como pequeña, que se dedica a la fabricación de acumuladores de plomo o baterías que actualmente no tiene un sistema de pronósticos establecido, seleccionando tres referencias comercializadas por la empresa. Se propone una metodología de perceptrón multicapa entrenado mediante el algoritmo de backpropagation y simulado en el software MATLAB R2014a utilizando como variable de estudio la demanda de cinco años. Los métodos de promedio móvil, suavización exponencial simple y suavización exponencial doble son evaluados seleccionando el de mejor desempeño según los indicadores de precisión para cada referencia. Las señales de rastreo de errores acumulados y suavizados son utilizadas para monitorear el desempeño de la metodología en redes neuronales y de las series de tiempo, obteniendo que los métodos tradicionales de series de tiempo aplicados en las tres referencias se encuentran fuera de control, indicando la presencia de errores no aleatorios asociados al método de pronóstico. Sin embargo, en la metodología de redes neuronales se obtiene que los pronósticos están bajo control demostrando la capacidad de obtener buenas predicciones en comparación a los otros métodos. Finalmente, se obtiene una notable reducción del error cuadrático medio de las redes neuronales en comparación a los métodos tradicionales de series de tiempo, concluyendo que las redes neuronales artificiales constituyen un buen método para la predicción de la demanda al ser capaz de adaptarse con precisión a los cambios de tendencia y la importancia de monitorear los métodos de pronostico a través del uso de señales de rastreo para mantener bajo control los parámetros que componen el sistema de pronóstico. |
---|