Ósmosis inversa como alternativa para el tratamiento de fluidos de perforación de base acuosa
Los lodos de perforación representan una parte fundamental para las empresas del sector de hidrocarburos ya que se utilizan para funciones específicas como el transporte, lubricación, control, enfriamiento, soporte y transmisión de energía, entre otros; además de que se formulan con base aceitosa, s...
- Autores:
-
Ramirez Palacios, Alejandra Paola
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Militar Nueva Granada
- Repositorio:
- Repositorio UMNG
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unimilitar.edu.co:10654/40185
- Acceso en línea:
- http://hdl.handle.net/10654/40185
- Palabra clave:
- LODOS DE PERFORACION
OSMOSIS INVERSA
CONVERSION DE AGUAS SALINAS
Aqueous base
Biomaterials
Drilling muds
Reverse osmosis
Base acuosa
Biomateriales
Lodos de perforación
Ósmosis inversa
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UNIMILTAR2_a9056f85ac4ad8ff4db2c8cb8a6800b2 |
---|---|
oai_identifier_str |
oai:repository.unimilitar.edu.co:10654/40185 |
network_acronym_str |
UNIMILTAR2 |
network_name_str |
Repositorio UMNG |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Ósmosis inversa como alternativa para el tratamiento de fluidos de perforación de base acuosa |
dc.title.translated.spa.fl_str_mv |
Reverse osmosis as an alternative for the treatment of aqueous based drilling fluids |
title |
Ósmosis inversa como alternativa para el tratamiento de fluidos de perforación de base acuosa |
spellingShingle |
Ósmosis inversa como alternativa para el tratamiento de fluidos de perforación de base acuosa LODOS DE PERFORACION OSMOSIS INVERSA CONVERSION DE AGUAS SALINAS Aqueous base Biomaterials Drilling muds Reverse osmosis Base acuosa Biomateriales Lodos de perforación Ósmosis inversa |
title_short |
Ósmosis inversa como alternativa para el tratamiento de fluidos de perforación de base acuosa |
title_full |
Ósmosis inversa como alternativa para el tratamiento de fluidos de perforación de base acuosa |
title_fullStr |
Ósmosis inversa como alternativa para el tratamiento de fluidos de perforación de base acuosa |
title_full_unstemmed |
Ósmosis inversa como alternativa para el tratamiento de fluidos de perforación de base acuosa |
title_sort |
Ósmosis inversa como alternativa para el tratamiento de fluidos de perforación de base acuosa |
dc.creator.fl_str_mv |
Ramirez Palacios, Alejandra Paola |
dc.contributor.advisor.none.fl_str_mv |
Pedraza Nájar, Ximena Lucía |
dc.contributor.author.none.fl_str_mv |
Ramirez Palacios, Alejandra Paola |
dc.subject.lemb.spa.fl_str_mv |
LODOS DE PERFORACION OSMOSIS INVERSA CONVERSION DE AGUAS SALINAS |
topic |
LODOS DE PERFORACION OSMOSIS INVERSA CONVERSION DE AGUAS SALINAS Aqueous base Biomaterials Drilling muds Reverse osmosis Base acuosa Biomateriales Lodos de perforación Ósmosis inversa |
dc.subject.keywords.spa.fl_str_mv |
Aqueous base Biomaterials Drilling muds Reverse osmosis |
dc.subject.proposal.spa.fl_str_mv |
Base acuosa Biomateriales Lodos de perforación Ósmosis inversa |
description |
Los lodos de perforación representan una parte fundamental para las empresas del sector de hidrocarburos ya que se utilizan para funciones específicas como el transporte, lubricación, control, enfriamiento, soporte y transmisión de energía, entre otros; además de que se formulan con base aceitosa, sintética o base acuosa. Por lo tanto, el objetivo general del artículo fue presentar un análisis a partir de revisión bibliográfica, de las ventajas y desventajas del uso de la ósmosis inversa (OI) para tratar los efluentes de perforación en explotaciones de hidrocarburos. La metodología utilizada fue de tipo cualitativa basada en la revisión bibliográfica de artículos científicos, libros especializados, trabajos de grado publicados en repositorios institucionales y fuentes originales digitalizadas oficialmente; además del análisis respectivo del autor para llegar a delimitar los hallazgos de acuerdo a la realidad del tema investigado. Los resultados principales señalan que la ósmosis inversa (OI) es una de las alternativas más viables para el proceso de preparación de fluidos de perforación con base acusa ya que ayuda con la conservación del medio ambiente y la recuperación de gran parte del agua limpia que es utilizada para este proceso a través de una membrana semipermeable que puede tener una duración de dos o más años en la separación y limpieza del recurso hídrico. Las conclusiones de mayor relevancia muestran que la OI permite obtener un efluente apto para ser reutilizado en la formulación de los fluidos de perforación o para ser vertida a cuerpos de agua superficial, subterránea o al suelo. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11-30 |
dc.date.accessioned.none.fl_str_mv |
2022-02-23T19:43:30Z |
dc.date.available.none.fl_str_mv |
2022-02-23T19:43:30Z |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Especialización |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.*.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10654/40185 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Militar Nueva Granada |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Militar Nueva Granada |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unimilitar.edu.co |
url |
http://hdl.handle.net/10654/40185 |
identifier_str_mv |
instname:Universidad Militar Nueva Granada reponame:Repositorio Institucional Universidad Militar Nueva Granada repourl:https://repository.unimilitar.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abbas, A. (2021). Experimental investigation of cuttings transport with nanocomposite water-based drilling fluids modified by cellulose nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615(1), 126-240. https://doi.org/10.1016/j.colsurfa.2021.126240 Adewole, J. y Najimu, M. (2020). Development of a green multifunctional additive for applications in water-based drilling fluids. International Journal of Energy and Water Resources, 4(3), 221–229. https://doi.org/10.1007/s42108-020-00078-1 Adhami, S., Jamshidi, A., y Darban, A. (2021). Remediation of oil-based drilling waste using the electrokinetic-Fenton method. Process Safety and Environmental Protection, 149, 432–441. https://doi.org/10.1016/j.psep.2020.11.018 Al-Hameedi, A., Alkinani, H.., y Dunn, S. (2021). Development of high-performance water-based drilling fluid using biodegradable eco-friendly additive (Peanut Shells). International Journal of Environmental Science and Technology, 12(1) https://doi.org/10.1007/s13762-021-03472-2 Al-Hameedi, A., Alkinani, H., Dunn, S., Al-Alwani, M., Al-Bazzaz, W., Alshammari, A., Albazzaz, H., y Mutar, R. (2020a). Experimental investigation of bio-enhancer drilling fluid additive: Can palm tree leaves be utilized as a supportive eco-friendly additive in water-based drilling fluid system? Journal of Petroleum Exploration and Production Technology, 10(2), 595–603. https://doi.org/10.1007/s13202-019-00766-7 Al-Hameedi, A., Alkinani, H., Dunn, S., Al-Alwani, M., Alshammari, A., Alkhamis, M., Mutar, R., y Al-Bazzaz, W. (2020b). Experimental investigation of environmentally friendly drilling fluid additives (mandarin peels powder) to substitute the conventional chemicals used in water-based drilling fluid. Journal of Petroleum Exploration and Production Technology, 10(2), 407–417. https://doi.org/10.1007/s13202-019-0725-7 Bakaraki, N., Sari, H., y Onkal, G. (2017). The investigation of shale gas wastewater treatment by electro-Fenton process: Statistical optimization of operational parameters. Process Safety and Environmental Protection, 109, 203–213. https://doi.org/10.1016/j.psep.2017.04.002 Bravo, E. (2007) Los impactos de la explotación petrolera en ecosistemas tropicales y la biodiversidad. Inredh 1(1) 161. https://www.inredh.org/archivos/documentos_ambiental/impactos_explotacion_petrolera_esp.pdf Chen, Z., Zheng, Z., Li, D., Chen, H., y Xu, Y. (2020). Continuous supercritical water oxidation treatment of oil-based drill cuttings using municipal sewage sludge as diluent. Journal of Hazardous Materials, 384(266), 121225. https://doi.org/10.1016/j.jhazmat.2019.121225 Duarte, A., Ribeiro, P., Kim, N., Mendes, J., Policarpo, N., y Vianna, A. (2021). An experimental study of gas solubility in glycerin based drilling fluid applied to well control. Journal of Petroleum Science and Engineering, 207(7), 109-194. https://doi.org/10.1016/j.petrol.2021.109194 Estrada, J., y Bhamidimarri, R. (2016). A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing. Fuel, 182, 292–303. https://doi.org/10.1016/j.fuel.2016.05.051 Fababuj, M., Mendoza, J., Galiana, M., Bes-Piá, A., Cuartas, B., y Iborra, A. (2007). Reuse of tannery wastewaters by combination of ultrafiltration and reverse osmosis after a conventional physical-chemical treatment. Desalination, 204(1-3), 219–226. https://doi.org/10.1016/j.desal.2006.02.032 Fatihah, N., Katende, A., Ismail, I., Sagala, F., Sharif, N., y Che, M. (2019). A comprehensive investigation on the performance of durian rind as a lost circulation material in water based drilling mud. Petroleum, 5(3), 285–294. https://doi.org/10.1016/j.petlm.2018.10.004 Gao, X., Zhong, H., Zhang, X., Chen, A., Qiu, Z., y Huang, W. (2021). Application of sustainable basil seed as an eco-friendly multifunctional additive for water-based drilling fluids. Petroleum Science, xxxx. https://doi.org/10.1016/j.petsci.2021.05.005 Garzón J., Rodríguez, J. y Hernández, C. (2017) Aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Revista Universidad y Salud. 19(2) 309-318. http://www.scielo.org.co/pdf/reus/v19n2/0124-7107-reus-19-02-00309.pdf Gómez, C. (2016) Alternativas para la minimización del uso del agua en las operaciones de fracturamiento hidraúlico en la explotación de yacimientos no convencionales. Fundación Universidad de América (Tesis de especialización) 1-63. https://repository.uamerica.edu.co/bitstream/20.500.11839/639/1/5101422-2016-2-GA.pdf Haider, S., Messaoud, M., Aknouche, H., Akkouche, A., Hammadi, L., y Safi, B. (2019). An ecological water-based drilling mud (WBM) with low cost: substitution of polymers by wood wastes. Journal of Petroleum Exploration and Production Technology, 9(1), 307–313. https://doi.org/10.1007/s13202-018-0469-9 Hickenbottom, K., Hancock, N., Hutchings, N., Appleton, E., Beaudry, E., Xu, P., y Cath, T. (2013) Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, 312, 60–66. https://doi.org/10.1016/j.desal.2012.05.037 Islam, M., Sultana, S., McCutcheon, J., y Rahaman, M. (2019). Treatment of fracking wastewaters via forward osmosis: Evaluation of suitable organic draw solutions. Desalination, 452(11), 149–158. https://doi.org/10.1016/j.desal.2018.11.010 Kausley, S., Malhotra, C., y Pandit, A. (2017). Treatment and reuse of shale gas wastewater: Electrocoagulation system for enhanced removal of organic contamination and scale causing divalent cations. Journal of Water Process Engineering, 16, 149–162. https://doi.org/10.1016/j.jwpe.2016.11.003 Maldonado, A. (2006) Formulación y evaluación de fluidos de perforación de base agua de alto rendimiento aplicados al campo balcón como sustitutos de lodo base aceite. Universidad Industrial de Santander (Tesis de grado) 1-154. http://tangara.uis.edu.co/biblioweb/tesis/2006/121946.pdf Muhammed, N., Olayiwola, T., Elkatatny, S., Haq, B., y Patil, S. (2021). Insights into the application of surfactants and nanomaterials as shale inhibitors for water-based drilling fluid. A review. Journal of Natural Gas Science and Engineering, 92(2), 103-187. https://doi.org/10.1016/j.jngse.2021.103987 Pereira, L., Sad, C., Da Silva, M., Corona, R., Dos Santos, F., Gonçalves, G., Castro, E., Filgueiras, P., y Lacerda, V. (2019). Oil recovery from water-based drilling fluid waste. Fuel, 237(10), 335–343. https://doi.org/10.1016/j.fuel.2018.10.007 Poyai, T., Getwech, C., Dhanasin, P., Punyapalakul, P., Painmanakul, P., y Chawaloesphonsiya, N. (2020). Solvent-based washing as a treatment alternative for onshore petroleum drill cuttings in Thailand. Science of the Total Environment, 718(5), 137-384. https://doi.org/10.1016/j.scitotenv.2020.137384 Qin, S., Ma, F., Huang, P., y Yang, J. (2009). Fe (II) and Mn (II) removal from drilled well water: A case study from a biological treatment unit in Harbin. Desalination, 245(1–3), 183–193. https://doi.org/10.1016/j.desal.2008.04.048 Rana, A., Saleh, T., y Arfaj, M. (2021). Nanosilica modified with moringa extracts to get an efficient and cost-effective shale inhibitor in water-based drilling muds. Chemical Engineering and Processing - Process Intensification, 168(8), 108-589. https://doi.org/10.1016/j.cep.2021.108589 Saleh, T., Rana, A., y Arfaj, M. (2020) Graphene grafted with polyethyleneimine for enhanced shale inhibition in the water-based drilling fluid. Environmental Nanotechnology, Monitoring and Management, 14(January), 100348. https://doi.org/10.1016/j.enmm.2020.100348 Santos, J., Petri, I., Mota, A., Morais, A., Dos Santos, F., y Ataíde, C. (2018). Optimization of the batch decontamination process of drill cuttings by microwave heating. Journal of Petroleum Science and Engineering, 163(4), 349–358. https://doi.org/10.1016/j.petrol.2018.01.003 Shen, X., Jiang, G., Li, X., He, Y., Yang, L., Cui, K., y Li, W. (2021). Application of carboxylated cellulose nanocrystals as eco-friendly shale inhibitors in water-based drilling fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627(7), 127-182. https://doi.org/10.1016/j.colsurfa.2021.127182 Siddig, O., Mahmoud, A., y Elkatatny, S. (2020). A review of different approaches for water-based drilling fluid filter cake removal. Journal of Petroleum Science and Engineering, 192(4), 107-346. https://doi.org/10.1016/j.petrol.2020.107346 Spellman, F. (2016). Reverse osmosis, a guide for the nonengineering professional. CRC Press, Taylor & Francis Group. Sun, J., Chang, X., Lv, K., Wang, J., Zhang, F., Jin, J., Zhou, X., y Dai, Z. (2021). Environmentally friendly and salt-responsive polymer brush based on lignin nanoparticle as fluid-loss additive in water-based drilling fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 621(2), 126-482. https://doi.org/10.1016/j.colsurfa.2021.126482 Wang, Z., Chen, Z., Niu, Y., Ren, P., y Hao, M. (2021) Feasibility of vermicomposting for spent drilling fluid from a nature-gas industry employing earthworms Eisenia fetida. Ecotoxicology and Environmental Safety, 214(1), 111-994. https://doi.org/10.1016/j.ecoenv.2021.111994 Wu, S., Wallace, S., Brix, H., Kuschk, P., Kipkemoi, W., Masi, F., y Dong, R. (2015) Treatment of industrial ef fl uents in constructed wetlands : Challenges , operational strategies and overall performance. Environmental Pollution, 201, 107–120. https://doi.org/10.1016/j.envpol.2015.03.006 Xie, S., Ren, W., Qiao, C., Tong, K., Sun, J., Zhang, M., Liu, X., y Zhang, Z. (2018) An electrochemical adsorption method for the reuse of waste water-based drilling fluids. Natural Gas Industry B. 5(5), 508–512. https://doi.org/10.1016/j.ngib.2018.03.005 Zhang, H., Wu, B., Li, X., Zhang, X., y Wang, Y. (2021). Electrocoagulation treatment of shale gas drilling wastewater: Performance and statistical optimization. Science of the Total Environment, 794, 148-436. https://doi.org/10.1016/j.scitotenv.2021.148436 Zou, J., Zhu, H., Wang, F., Sui, H., y Fan, J. (2011) Preparation of a new inorganic-organic composite flocculant used in solid-liquid separation for waste drilling fluid. Chemical Engineering Journal, 171(1), 350–356. https://doi.org/10.1016/j.cej.2011.03.100 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.accessrights.*.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 Attribution-NonCommercial-NoDerivatives 4.0 International Acceso abierto |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
applicaction/pdf |
dc.coverage.sede.spa.fl_str_mv |
Calle 100 |
dc.publisher.program.spa.fl_str_mv |
Especialización en Planeación Ambiental y Manejo Integral de los Recursos Naturales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Militar Nueva Granada |
institution |
Universidad Militar Nueva Granada |
bitstream.url.fl_str_mv |
http://repository.unimilitar.edu.co/bitstream/10654/40185/1/RamirezPalaciosAlejandraPaola2021.pdf http://repository.unimilitar.edu.co/bitstream/10654/40185/2/license.txt http://repository.unimilitar.edu.co/bitstream/10654/40185/3/RamirezPalaciosAlejandraPaola2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
b6b2c1da68fd46656283992e0edd4168 a609d7e369577f685ce98c66b903b91b f114d58d8de9335868707abed898537a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UMNG |
repository.mail.fl_str_mv |
bibliodigital@unimilitar.edu.co |
_version_ |
1837098377979887616 |
spelling |
Pedraza Nájar, Ximena LucíaRamirez Palacios, Alejandra PaolaEspecialista en Planeación Ambiental y Manejo Integral de los Recursos Naturales2022-02-23T19:43:30Z2022-02-23T19:43:30Z2021-11-30http://hdl.handle.net/10654/40185instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.unimilitar.edu.coLos lodos de perforación representan una parte fundamental para las empresas del sector de hidrocarburos ya que se utilizan para funciones específicas como el transporte, lubricación, control, enfriamiento, soporte y transmisión de energía, entre otros; además de que se formulan con base aceitosa, sintética o base acuosa. Por lo tanto, el objetivo general del artículo fue presentar un análisis a partir de revisión bibliográfica, de las ventajas y desventajas del uso de la ósmosis inversa (OI) para tratar los efluentes de perforación en explotaciones de hidrocarburos. La metodología utilizada fue de tipo cualitativa basada en la revisión bibliográfica de artículos científicos, libros especializados, trabajos de grado publicados en repositorios institucionales y fuentes originales digitalizadas oficialmente; además del análisis respectivo del autor para llegar a delimitar los hallazgos de acuerdo a la realidad del tema investigado. Los resultados principales señalan que la ósmosis inversa (OI) es una de las alternativas más viables para el proceso de preparación de fluidos de perforación con base acusa ya que ayuda con la conservación del medio ambiente y la recuperación de gran parte del agua limpia que es utilizada para este proceso a través de una membrana semipermeable que puede tener una duración de dos o más años en la separación y limpieza del recurso hídrico. Las conclusiones de mayor relevancia muestran que la OI permite obtener un efluente apto para ser reutilizado en la formulación de los fluidos de perforación o para ser vertida a cuerpos de agua superficial, subterránea o al suelo.Drilling muds represent a fundamental part for companies in the hydrocarbon sector since they are used for specific functions such as transport, lubrication, control, cooling, support and transmission of energy, among others; In addition, they are formulated with an oily, synthetic or aqueous base. Therefore, the general objective of the article was to present an analysis, based on a bibliographic review, of the advantages and disadvantages of the use of reverse osmosis (RO) to treat drilling effluents in hydrocarbon operations. The methodology used was qualitative based on the bibliographic review of scientific articles, specialized books, graduate work published in institutional repositories and officially digitized original sources; in addition to the respective analysis of the author to get to delimit the findings according to the reality of the investigated topic. The main results indicate that reverse osmosis (RO) is one of the most viable alternatives for the process of preparing drilling fluids based on accuse since it helps with the conservation of the environment and the recovery of much of the clean water that is used for this process through a semi-permeable membrane that can last two or more years in the separation and cleaning of the water resource. The most relevant conclusions show that RO allows to obtain an effluent suitable to be reused in the formulation of drilling fluids or to be discharged into bodies of surface water, underground or into the ground.Especializaciónapplicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertoÓsmosis inversa como alternativa para el tratamiento de fluidos de perforación de base acuosaReverse osmosis as an alternative for the treatment of aqueous based drilling fluidsLODOS DE PERFORACIONOSMOSIS INVERSACONVERSION DE AGUAS SALINASAqueous baseBiomaterialsDrilling mudsReverse osmosisBase acuosaBiomaterialesLodos de perforaciónÓsmosis inversaTesis/Trabajo de grado - Monografía - Especializacióninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fEspecialización en Planeación Ambiental y Manejo Integral de los Recursos NaturalesFacultad de IngenieríaUniversidad Militar Nueva GranadaAbbas, A. (2021). Experimental investigation of cuttings transport with nanocomposite water-based drilling fluids modified by cellulose nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615(1), 126-240. https://doi.org/10.1016/j.colsurfa.2021.126240Adewole, J. y Najimu, M. (2020). Development of a green multifunctional additive for applications in water-based drilling fluids. International Journal of Energy and Water Resources, 4(3), 221–229. https://doi.org/10.1007/s42108-020-00078-1Adhami, S., Jamshidi, A., y Darban, A. (2021). Remediation of oil-based drilling waste using the electrokinetic-Fenton method. Process Safety and Environmental Protection, 149, 432–441. https://doi.org/10.1016/j.psep.2020.11.018Al-Hameedi, A., Alkinani, H.., y Dunn, S. (2021). Development of high-performance water-based drilling fluid using biodegradable eco-friendly additive (Peanut Shells). International Journal of Environmental Science and Technology, 12(1) https://doi.org/10.1007/s13762-021-03472-2Al-Hameedi, A., Alkinani, H., Dunn, S., Al-Alwani, M., Al-Bazzaz, W., Alshammari, A., Albazzaz, H., y Mutar, R. (2020a). Experimental investigation of bio-enhancer drilling fluid additive: Can palm tree leaves be utilized as a supportive eco-friendly additive in water-based drilling fluid system? Journal of Petroleum Exploration and Production Technology, 10(2), 595–603. https://doi.org/10.1007/s13202-019-00766-7Al-Hameedi, A., Alkinani, H., Dunn, S., Al-Alwani, M., Alshammari, A., Alkhamis, M., Mutar, R., y Al-Bazzaz, W. (2020b). Experimental investigation of environmentally friendly drilling fluid additives (mandarin peels powder) to substitute the conventional chemicals used in water-based drilling fluid. Journal of Petroleum Exploration and Production Technology, 10(2), 407–417. https://doi.org/10.1007/s13202-019-0725-7Bakaraki, N., Sari, H., y Onkal, G. (2017). The investigation of shale gas wastewater treatment by electro-Fenton process: Statistical optimization of operational parameters. Process Safety and Environmental Protection, 109, 203–213. https://doi.org/10.1016/j.psep.2017.04.002Bravo, E. (2007) Los impactos de la explotación petrolera en ecosistemas tropicales y la biodiversidad. Inredh 1(1) 161. https://www.inredh.org/archivos/documentos_ambiental/impactos_explotacion_petrolera_esp.pdfChen, Z., Zheng, Z., Li, D., Chen, H., y Xu, Y. (2020). Continuous supercritical water oxidation treatment of oil-based drill cuttings using municipal sewage sludge as diluent. Journal of Hazardous Materials, 384(266), 121225. https://doi.org/10.1016/j.jhazmat.2019.121225Duarte, A., Ribeiro, P., Kim, N., Mendes, J., Policarpo, N., y Vianna, A. (2021). An experimental study of gas solubility in glycerin based drilling fluid applied to well control. Journal of Petroleum Science and Engineering, 207(7), 109-194. https://doi.org/10.1016/j.petrol.2021.109194Estrada, J., y Bhamidimarri, R. (2016). A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing. Fuel, 182, 292–303. https://doi.org/10.1016/j.fuel.2016.05.051Fababuj, M., Mendoza, J., Galiana, M., Bes-Piá, A., Cuartas, B., y Iborra, A. (2007). Reuse of tannery wastewaters by combination of ultrafiltration and reverse osmosis after a conventional physical-chemical treatment. Desalination, 204(1-3), 219–226. https://doi.org/10.1016/j.desal.2006.02.032Fatihah, N., Katende, A., Ismail, I., Sagala, F., Sharif, N., y Che, M. (2019). A comprehensive investigation on the performance of durian rind as a lost circulation material in water based drilling mud. Petroleum, 5(3), 285–294. https://doi.org/10.1016/j.petlm.2018.10.004Gao, X., Zhong, H., Zhang, X., Chen, A., Qiu, Z., y Huang, W. (2021). Application of sustainable basil seed as an eco-friendly multifunctional additive for water-based drilling fluids. Petroleum Science, xxxx. https://doi.org/10.1016/j.petsci.2021.05.005Garzón J., Rodríguez, J. y Hernández, C. (2017) Aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Revista Universidad y Salud. 19(2) 309-318. http://www.scielo.org.co/pdf/reus/v19n2/0124-7107-reus-19-02-00309.pdfGómez, C. (2016) Alternativas para la minimización del uso del agua en las operaciones de fracturamiento hidraúlico en la explotación de yacimientos no convencionales. Fundación Universidad de América (Tesis de especialización) 1-63. https://repository.uamerica.edu.co/bitstream/20.500.11839/639/1/5101422-2016-2-GA.pdfHaider, S., Messaoud, M., Aknouche, H., Akkouche, A., Hammadi, L., y Safi, B. (2019). An ecological water-based drilling mud (WBM) with low cost: substitution of polymers by wood wastes. Journal of Petroleum Exploration and Production Technology, 9(1), 307–313. https://doi.org/10.1007/s13202-018-0469-9Hickenbottom, K., Hancock, N., Hutchings, N., Appleton, E., Beaudry, E., Xu, P., y Cath, T. (2013) Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, 312, 60–66. https://doi.org/10.1016/j.desal.2012.05.037Islam, M., Sultana, S., McCutcheon, J., y Rahaman, M. (2019). Treatment of fracking wastewaters via forward osmosis: Evaluation of suitable organic draw solutions. Desalination, 452(11), 149–158. https://doi.org/10.1016/j.desal.2018.11.010Kausley, S., Malhotra, C., y Pandit, A. (2017). Treatment and reuse of shale gas wastewater: Electrocoagulation system for enhanced removal of organic contamination and scale causing divalent cations. Journal of Water Process Engineering, 16, 149–162. https://doi.org/10.1016/j.jwpe.2016.11.003Maldonado, A. (2006) Formulación y evaluación de fluidos de perforación de base agua de alto rendimiento aplicados al campo balcón como sustitutos de lodo base aceite. Universidad Industrial de Santander (Tesis de grado) 1-154. http://tangara.uis.edu.co/biblioweb/tesis/2006/121946.pdfMuhammed, N., Olayiwola, T., Elkatatny, S., Haq, B., y Patil, S. (2021). Insights into the application of surfactants and nanomaterials as shale inhibitors for water-based drilling fluid. A review. Journal of Natural Gas Science and Engineering, 92(2), 103-187. https://doi.org/10.1016/j.jngse.2021.103987Pereira, L., Sad, C., Da Silva, M., Corona, R., Dos Santos, F., Gonçalves, G., Castro, E., Filgueiras, P., y Lacerda, V. (2019). Oil recovery from water-based drilling fluid waste. Fuel, 237(10), 335–343. https://doi.org/10.1016/j.fuel.2018.10.007Poyai, T., Getwech, C., Dhanasin, P., Punyapalakul, P., Painmanakul, P., y Chawaloesphonsiya, N. (2020). Solvent-based washing as a treatment alternative for onshore petroleum drill cuttings in Thailand. Science of the Total Environment, 718(5), 137-384. https://doi.org/10.1016/j.scitotenv.2020.137384Qin, S., Ma, F., Huang, P., y Yang, J. (2009). Fe (II) and Mn (II) removal from drilled well water: A case study from a biological treatment unit in Harbin. Desalination, 245(1–3), 183–193. https://doi.org/10.1016/j.desal.2008.04.048Rana, A., Saleh, T., y Arfaj, M. (2021). Nanosilica modified with moringa extracts to get an efficient and cost-effective shale inhibitor in water-based drilling muds. Chemical Engineering and Processing - Process Intensification, 168(8), 108-589. https://doi.org/10.1016/j.cep.2021.108589Saleh, T., Rana, A., y Arfaj, M. (2020) Graphene grafted with polyethyleneimine for enhanced shale inhibition in the water-based drilling fluid. Environmental Nanotechnology, Monitoring and Management, 14(January), 100348. https://doi.org/10.1016/j.enmm.2020.100348Santos, J., Petri, I., Mota, A., Morais, A., Dos Santos, F., y Ataíde, C. (2018). Optimization of the batch decontamination process of drill cuttings by microwave heating. Journal of Petroleum Science and Engineering, 163(4), 349–358. https://doi.org/10.1016/j.petrol.2018.01.003Shen, X., Jiang, G., Li, X., He, Y., Yang, L., Cui, K., y Li, W. (2021). Application of carboxylated cellulose nanocrystals as eco-friendly shale inhibitors in water-based drilling fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 627(7), 127-182. https://doi.org/10.1016/j.colsurfa.2021.127182Siddig, O., Mahmoud, A., y Elkatatny, S. (2020). A review of different approaches for water-based drilling fluid filter cake removal. Journal of Petroleum Science and Engineering, 192(4), 107-346. https://doi.org/10.1016/j.petrol.2020.107346Spellman, F. (2016). Reverse osmosis, a guide for the nonengineering professional. CRC Press, Taylor & Francis Group.Sun, J., Chang, X., Lv, K., Wang, J., Zhang, F., Jin, J., Zhou, X., y Dai, Z. (2021). Environmentally friendly and salt-responsive polymer brush based on lignin nanoparticle as fluid-loss additive in water-based drilling fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 621(2), 126-482. https://doi.org/10.1016/j.colsurfa.2021.126482Wang, Z., Chen, Z., Niu, Y., Ren, P., y Hao, M. (2021) Feasibility of vermicomposting for spent drilling fluid from a nature-gas industry employing earthworms Eisenia fetida. Ecotoxicology and Environmental Safety, 214(1), 111-994. https://doi.org/10.1016/j.ecoenv.2021.111994Wu, S., Wallace, S., Brix, H., Kuschk, P., Kipkemoi, W., Masi, F., y Dong, R. (2015) Treatment of industrial ef fl uents in constructed wetlands : Challenges , operational strategies and overall performance. Environmental Pollution, 201, 107–120. https://doi.org/10.1016/j.envpol.2015.03.006Xie, S., Ren, W., Qiao, C., Tong, K., Sun, J., Zhang, M., Liu, X., y Zhang, Z. (2018) An electrochemical adsorption method for the reuse of waste water-based drilling fluids. Natural Gas Industry B. 5(5), 508–512. https://doi.org/10.1016/j.ngib.2018.03.005Zhang, H., Wu, B., Li, X., Zhang, X., y Wang, Y. (2021). Electrocoagulation treatment of shale gas drilling wastewater: Performance and statistical optimization. Science of the Total Environment, 794, 148-436. https://doi.org/10.1016/j.scitotenv.2021.148436Zou, J., Zhu, H., Wang, F., Sui, H., y Fan, J. (2011) Preparation of a new inorganic-organic composite flocculant used in solid-liquid separation for waste drilling fluid. Chemical Engineering Journal, 171(1), 350–356. https://doi.org/10.1016/j.cej.2011.03.100Calle 100ORIGINALRamirezPalaciosAlejandraPaola2021.pdfRamirezPalaciosAlejandraPaola2021.pdfArtículoapplication/pdf256854http://repository.unimilitar.edu.co/bitstream/10654/40185/1/RamirezPalaciosAlejandraPaola2021.pdfb6b2c1da68fd46656283992e0edd4168MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83420http://repository.unimilitar.edu.co/bitstream/10654/40185/2/license.txta609d7e369577f685ce98c66b903b91bMD52THUMBNAILRamirezPalaciosAlejandraPaola2021.pdf.jpgRamirezPalaciosAlejandraPaola2021.pdf.jpgIM Thumbnailimage/jpeg7680http://repository.unimilitar.edu.co/bitstream/10654/40185/3/RamirezPalaciosAlejandraPaola2021.pdf.jpgf114d58d8de9335868707abed898537aMD5310654/40185oai:repository.unimilitar.edu.co:10654/401852022-02-27 01:03:07.047Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K |