Reconocimiento de miRNAs y su relación con la expresión de genes de clavel (Dianthus caryophyllus) involucrados en la respuesta al patógeno Fusarium oxysporum f. sp. dianthi

La producción de clavel a nivel mundial sufre grandes pérdidas por el marchitamiento vascular causado por el patógeno Fod (Fusarium oxysporum f. sp. dianthi). Por lo que Los trabajos relacionados con el mecanismo de respuesta de variedades naturalmente resistentes, podría ser el primer paso para la...

Full description

Autores:
Morales Villanueva, Carlos Alberto
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.unimilitar.edu.co:10654/44529
Acceso en línea:
http://hdl.handle.net/10654/44529
Palabra clave:
miRNA
Carnation
Fusarium oxysporum
Dianthus caryophyllus
FUSARIUM OXYSPORUM
DIANTHUS CARYOPHYLLUS
ORGANISMOS PATOGENOS
miARN
Clavel
Fusarium oxysporum
Dianthus caryophyllus
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIMILTAR2_8e16f1b985e8c35e119fa69095958c13
oai_identifier_str oai:repository.unimilitar.edu.co:10654/44529
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Reconocimiento de miRNAs y su relación con la expresión de genes de clavel (Dianthus caryophyllus) involucrados en la respuesta al patógeno Fusarium oxysporum f. sp. dianthi
dc.title.translated.spa.fl_str_mv Recognition of miRNAs and their relationship with the expression of carnation (Dianthus caryophyllus) genes involved in the response to the pathogen Fusarium oxysporum f. sp. dianthi
title Reconocimiento de miRNAs y su relación con la expresión de genes de clavel (Dianthus caryophyllus) involucrados en la respuesta al patógeno Fusarium oxysporum f. sp. dianthi
spellingShingle Reconocimiento de miRNAs y su relación con la expresión de genes de clavel (Dianthus caryophyllus) involucrados en la respuesta al patógeno Fusarium oxysporum f. sp. dianthi
miRNA
Carnation
Fusarium oxysporum
Dianthus caryophyllus
FUSARIUM OXYSPORUM
DIANTHUS CARYOPHYLLUS
ORGANISMOS PATOGENOS
miARN
Clavel
Fusarium oxysporum
Dianthus caryophyllus
title_short Reconocimiento de miRNAs y su relación con la expresión de genes de clavel (Dianthus caryophyllus) involucrados en la respuesta al patógeno Fusarium oxysporum f. sp. dianthi
title_full Reconocimiento de miRNAs y su relación con la expresión de genes de clavel (Dianthus caryophyllus) involucrados en la respuesta al patógeno Fusarium oxysporum f. sp. dianthi
title_fullStr Reconocimiento de miRNAs y su relación con la expresión de genes de clavel (Dianthus caryophyllus) involucrados en la respuesta al patógeno Fusarium oxysporum f. sp. dianthi
title_full_unstemmed Reconocimiento de miRNAs y su relación con la expresión de genes de clavel (Dianthus caryophyllus) involucrados en la respuesta al patógeno Fusarium oxysporum f. sp. dianthi
title_sort Reconocimiento de miRNAs y su relación con la expresión de genes de clavel (Dianthus caryophyllus) involucrados en la respuesta al patógeno Fusarium oxysporum f. sp. dianthi
dc.creator.fl_str_mv Morales Villanueva, Carlos Alberto
dc.contributor.author.none.fl_str_mv Morales Villanueva, Carlos Alberto
dc.subject.keywords.spa.fl_str_mv miRNA
Carnation
Fusarium oxysporum
Dianthus caryophyllus
topic miRNA
Carnation
Fusarium oxysporum
Dianthus caryophyllus
FUSARIUM OXYSPORUM
DIANTHUS CARYOPHYLLUS
ORGANISMOS PATOGENOS
miARN
Clavel
Fusarium oxysporum
Dianthus caryophyllus
dc.subject.agrovoc.spa.fl_str_mv FUSARIUM OXYSPORUM
DIANTHUS CARYOPHYLLUS
ORGANISMOS PATOGENOS
dc.subject.proposal.spa.fl_str_mv miARN
Clavel
Fusarium oxysporum
Dianthus caryophyllus
description La producción de clavel a nivel mundial sufre grandes pérdidas por el marchitamiento vascular causado por el patógeno Fod (Fusarium oxysporum f. sp. dianthi). Por lo que Los trabajos relacionados con el mecanismo de respuesta de variedades naturalmente resistentes, podría ser el primer paso para la producción de variedades comerciales resistentes a Fod. En este estudio se fabricaron librerías de miRNA de dos variedades. 395 resistente y SH2 susceptible a Fod, en dos tratamientos: antes de la elicitación y después de la elicitación. Se encontraron miRNAs putativos que regulan la expresión de alguno de los 35 genes muestra. Estos genes muestran variaciones importantes en sus niveles de expresión durante la elicitación con Fod. Esto se determinó en trabajos anteriores en el laboratorio de Biotecnología vegetal de la Universidad Militar Nueva Granada. Estos miRNAs fueron validados y su perfil de control postranscripcional fue relacionado con el mecanismo de respuesta de ambas variedades. Se encontró que ambas variedades responden mediante el mismo perfil de control postranscripcional y tienen un mecanismo de respuesta similar. Sin embargo, 395 controla postranscripcionalmente los genes adecuados en el momento oportuno para responder de manera efectiva. Mientras que SH2 no tiene esa misma eficiencia, lo que no le permite ser oportuno en la respuesta ante Fod. Se proponen 84 miRNAs putativos en total que están controlando los mecanismos de expresión de 26 de los 35 genes al momento de la elicitación. Realizar experimentos de “Knock out” o “Knock down” sobre estos 84 miRNAs podría mostrar perdida o ganancia de resistencia a Fod, lo que permitiría concluir que estos miRNAs son claves para el mecanismo de respuesta de variedades resistentes de clavel ante Fod.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11-21
dc.date.accessioned.none.fl_str_mv 2023-06-13T20:01:03Z
dc.date.available.none.fl_str_mv 2023-06-13T20:01:03Z
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.*.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10654/44529
dc.identifier.instname.spa.fl_str_mv instname:Universidad Militar Nueva Granada
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unimilitar.edu.co
url http://hdl.handle.net/10654/44529
identifier_str_mv instname:Universidad Militar Nueva Granada
reponame:Repositorio Institucional Universidad Militar Nueva Granada
repourl:https://repository.unimilitar.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Agrios, G. N. (1997). Control of plant diseases. San Diego, Academic Press.
2. Arai, M., and Takeuchi, M. (1993). Influence of Fusarium wilt toxin (s) on carnation cells. Plant cell, tissue and organ culture, 34(3), 287-293.
3. Bailey, L. H. (1942). The Standard Cyclopedia of Horticulture. New York, Macmillan Company.
4. Barciszewska-Pacak, M., Milanowska, K., Knop, K., Bielewicz, D., Nuc, P., Plewka, P., and Szweykowska-Kulinska, Z. (2015). Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Frontiers in plant science, 6, 410.
5. Bartel, D. P. (2004). MicroRANs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.
6. Baulcombe, D. (2005). RNA silencing. Trends in biochemical sciences, 30(6), 290-293.
7. Ben yephet, Y., Reuven, M. and Shtienberg, D. (1997). Complete resistance by carnation cultivars to Fusarium wilt induced by Fusarium oxysporum f.sp. dianthi race 2. Plant Disease 81(7), 777-780.
8. Benavides, J.L., Garcés, E., Arbeláez, G. y Dukuara, F. (1995). Determinación de razas fisiológicas de Fusarium oxysporum f. sp. dianthi en suelos cultivados y en variedades de clavel en la finca “Flores las Palmas”. Agronomía colombiana. 12(1), 21-26.
9. Berger, S., Benediktyová, Z., Matouš, K., Bonfig, K., Mueller, J, M., Nedbal, L., and Roitsch, T. (2007). Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent. Journal of Experimental Botany, 58(4), 797-806.
10. Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R., and Zhu, J. K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123(7), 1279-1291.
11. Buiatti, M., Scala, A., Bettini, P., Nascari, G., Morpurgo, R., Bogani, P., and Venturo, R. (1985). Correlations between in vivo resistance to Fusarium and in vitro response to fungal elicitors and toxic substances in carnation. Theoretical and Applied Genetics, 70(1), 42-47.
12. Cai, Q., Liang, C., Wang, S. K., Hou, Y. N., Gao, L., Liu, L., et al. (2018). The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nat. Commun. 9, 5080.
13. Cao, C., Long, R., Zhang, T., Kang, J., Wang, Z., Wang, P., and Yang, Q. (2018). Genome-wide identification of microRNAs in response to salt/alkali stress in Medicago truncatula through high-throughput sequencing. International journal of molecular sciences, 19(12), 4076.
14. Charng, Y.-Y., Sun, C.-W., Yan, S.-L., Chou, S.-J., Chen, Y.-R., and Yang, S.F. (1998). cADN sequence of a putative ethylene receptor from carnation petals. Plant Physiology. 115, 863.
15. Chen, L., Ren, Y., Zhang, Y., Xu, J., Zhang, Z., and Wang, Y. (2012). Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta, 235(5), 873-883.
16. Cheng, J., Zhuo, H., Xu, M., Wang, L., Xu, H., Peng, J., and Cai, J. (2018). Regulatory network of circRNA–miRNA–mRNA contributes to the histological classification and disease progression in gastric cancer. Journal of translational medicine, 16(1), 1-14.
17. Cifras de floricultura Colombiana - Ceniflores. (n.d.). Retrieved November 19, 2020, from https://ceniflores.org/cifras-de-floricultura-colombiana/
18. Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., and Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome biology, 17(1), 1-19.
19. Curir, P., Dolci, M. and GaleottI, F. (2005). A phytoalexin-like flavonol envolved in the carnation (Dianthus caryophyllus) - Fusarium oxysporum f. sp. dianthi pathosystem. J. Phytopathology 153, 65-67.
20. Debbi, A., Boureghda, H., Monte, E., and Hermosa, R. (2018). Distribution and genetic variability of Fusarium oxysporum associated with tomato diseases in Algeria and a biocontrol strategy with indigenous Trichoderma spp. Frontiers in microbiology, 9, 282.
21. Di pietro, A, Madrid, M, P., Caracuel, Z., Delgado, J. and Roncero, M. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology. 4(5), 315-325.
22. Edel-Hermann, V., and Lecomte, C. (2019). Current status of fusarium oxysporum formae speciales and races. Phytopathology, 109(4), 512–530.
23. Fahlgren, N., and Carrington, J.C. (2010). miRNA Target Prediction in Plants. In: Meyers, B., Green, P. (eds) Plant MicroRNAs. Methods in Molecular Biology, vol 592. Humana Press.
24. Fang, X. F., Cui, Y. W., Li, Y. X., and Qi, Y. J. (2015). Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nat. Plants, 1, 15075.
25. Filgueira, J. 2011. Experiencias en mejoramiento del clavel (Diantus caryophyllus). Bogota, Universidad Militar Nueva Granada.
26. Gao, Z., Nie, J., and Wang, H. (2020). MicroRNA biogenesis in plant. Plant Growth Regulation 2020, 93(1), 1–12.
27. Gasco, M. J., Cortés, J. N., y Díaz, R. J. (2005). Evolución de Fusarium oxysporum f. sp. ciceris, el agente de la Fusariosis vascular del garbanzo, en razas patogénicas y patotipos. Boletín de sanidad vegetal. Plagas, 31(1), 59-70.
28. Gebert, L. F., and MacRae, I. J. (2019). Regulation of microRNA function in animals. Nature reviews Molecular cell biology, 20(1), 21-37.
29. Goswami, R. S., and Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular plant pathology, 5(6), 515-525.
30. Gubler, U., and Hoffman, B. J. (1983). A simple and very efficient method for generating cDNA libraries. Gene, 25(2-3), 263-269.
31. Hajheidari, M., Farrona, S., Huettel, B., Koncz, Z., and Koncz, C. (2012). CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. Plant Cell, 24, 1626–1642.
32. Hao, Z., Liu, D., Gong, S., Zhao, D., and Tao, J. (2017). High throughput sequencing of herbaceous peony small RNAs to screen thermos-tolerance-related microRNAs. Genes and Genomics, 39(4), 397-408.
33. Head, S. R., Komori, H. K., LaMere, S. A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D. R., and Ordoukhanian, P. (2014). Library construction for next-generation sequencing: overviews and challenges. Biotechniques, 56(2), 61-77.
34. Holley, W. D., and Baker, R. (1963). Carnation Production. Carnation Production. London, Grower Publications Ltd.
35. Huang, P. Y., Catinot, J., and Zimmerli, L. (2016). Ethylene response factors in Arabidopsis immunity. Journal of experimental botany, 67(5), 1231-1241.
36. Huang, Y., Zou, Q., Song, H., Song, F., Wang, L., Zhang, G., and Shen, X. (2010). A study of miRNAs targets prediction and experimental validation. Protein & cell, 1(11), 979-986.
37. Husaini, A. M., Sakina, A., and Cambay, S. R. (2018). Host–pathogen interaction in Fusarium oxysporum infections: where do we stand?. Molecular Plant-Microbe Interactions, 31(9), 889-898.
38. Jain, D., and Khurana, J. P. (2018). Role of pathogenesis-related (PR) proteins in plant defense mechanism. In Molecular aspects of plant-pathogen interaction (pp. 265-281). Singapore, Springer.
39. Jebessa, E., Ouyang, H., Abdalla, B. A., Li, Z., Abdullahi, A. Y., Liu, Q., and Zhang, X. (2018). Characterization of miRNA and their target gene during chicken embryo skeletal muscle development. Oncotarget, 9(25), 17309.
40. Joshi, R. (2018). A review of Fusarium oxysporum on its plant interaction and industrial use. J. Med. Plants Stud, 6(3), 112-115.
41. Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D., Borsani, O., Villegas, A., Zhu, J. K., and Jin, H. (2006). A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences, 103(47), 18002-18007.
42. Kreuze, J. (2014). siRNA deep sequencing and assembly: piecing together viral infections. In Detection and diagnostics of plant pathogens (pp. 21-38). Dordrecht, Springer.
43. Kuhn, D. E., Martin, M. M., Feldman, D. S., Terry Jr, A. V., Nuovo, G. J., and Elton, T. S. (2008). Experimental validation of miRNA targets. Methods, 44(1), 47-54.
44. Kulcheski, F. R., de Oliveira, L. F., Molina, L. G., Almerão, M. P., Rodrigues, F. A., Marcolino, J., and Margis, R. (2011). Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC genomics, 12(1), 1-17.
45. Kumar, I. S., Cheah, B. H., and Nadarajah, K. (2017). In silico identification and classification of disease resistance genes and defense-related genes against sheath blight from QTL qSBR11-1 in rice (Oryza sativa L.). Undergrad. Res. J. Integ. Biol, 1(8).
46. Lawton, K., Huang, B., Goldsbrough, P. and Woodson, W. (1989). Molecular cloning and characterization of senescence related-genes from carnation flower petals. Plant Physiology, 90, 690-696.
47. Lawton, K., Raghotama, K., Goldsbrough, P. and Woodson, W. (1990). Regulation of senescence-related gene expression in carnation flower petals by ethylene. Plant Physiology, 93, 1370-1375.
48. Li, M., and Yu, B. (2021). Recent advances in the regulation of plant miRNA biogenesis. RNA biology, 18(12), 2087-2096.
49. Liu, X., Tan, C., Cheng, X., Zhao, X., Li, T., and Jiang, J. (2020). miR168 targets Argonaute1A mediated miRNAs regulation pathways in response to potassium deficiency stress in tomato. BMC plant biology, 20(1), 1-17.
50. Lombard, L., Sandoval-Denis, M., Lamprecht, S. C., and Crous, P. W. (2019). Epitypification of Fusarium oxysporum - clearing the taxonomic chaos. Persoonia - Molecular Phylogeny and Evolution of Fungi, 43, 1-47.
51. Marguerat, S., and Bähler, J. (2010). RNA-seq: from technology to biology. Cellular and molecular life sciences, 67(4), 569-579.
52. Martinez Gonzalez, A. P. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi. Tesis doctoral. Universidad nacional de colombia.
53. McGeorge, P., and Hammett, K. (2002). Carnations and Pinks. Willowdale, Ont, Firefly Books.
54. McTaggart, A. R., James, T. Y., Shivas, R. G., Drenth, A., Wingfield, B. D., Summerell, B. A., and Duong, T. A. (2021). Population genomics reveals historical and ongoing recombination in the Fusarium oxysporum species complex. Studies in mycology, 99, 100132.
55. Meng, X. and Zhang, S. (2013). MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 51, 245-66.
56. Michlewski, G., and Cáceres, J. F. (2019). Post-transcriptional control of miRNA biogenesis. Rna, 25(1), 1-16.
57. Nair, M. M., and Manickavelu, A. (2020). MicroRNAs as fine-tuners of gene regulation in plant–microbe interactions. Current Science, 8, 1282.
58. Narjala, A., Nair, A., Tirumalai, V., Hari Sundar, G. V., and Shivaprasad, P. V. (2020). A conserved sequence signature is essential for robust plant miRNA biogenesis. Nucleic acids research, 48(6), 3103-3118.
59. Nelson, P. E., Toussoun, T. A., and Marasas, W. F. O. (1983). Fusarium species: an illustrated manual for identification. University Park, PA, Penn State University.
60. O'Donnell, K., Kistler, H. C., Cigelnik, E., and Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad, 95, 2044–2049.
61. Ok, S. H., Park, H. M., Kim, J. Y., Bahn, S. C., Bae, J. M., Suh, M. C., and Shin, J. S. (2003). Identification of differentially expressed genes during flower development in carnation (Dianthus caryophyllus). Plant Science, 165(2), 291-297.
62. Pandey, P., Srivastava, P. K., and Pandey, S. P. (2019). Prediction of plant miRNA targets. In Plant MicroRNAs (pp. 99-107). New York, NY, Humana Press.
63. Paul, S., Datta, S. K., and Datta, K. (2015). miRNA regulation of nutrient homeostasis in plants. Frontiers in plant science, 6, 232.
64. Pegler, J. L., Grof, C. P., and Eamens, A. L. (2018). Profiling of the differential abundance of drought and salt stress-responsive microRNAs across grass crop and genetic model plant species. Agronomy, 8(7), 118.
65. Pizano de Márquez, M. (2000). Clavel Dianthus caryophyllus. Bogotá, Hortitecnia Ltda.
66. Prigge, M. J., and Wagner, D. R. (2001). The Arabidopsis SERRATE Gene Encodes a Zinc-Finger Protein Required for Normal Shoot Development. The Plant Cell, 13(6), 1263–1280.
67. Pyo, Y., Kim, G. M., Choi, S. W., Song, C. Y., Yang, S. W., and Jung, I. L. (2020). Strontium stress disrupts miRNA biogenesis by reducing HYL1 protein levels in Arabidopsis. Ecotoxicology and Environmental Safety. 204, 111056.
68. Riolo, G., Cantara, S., Marzocchi, C., and Ricci, C. (2020). miRNA targets: from prediction tools to experimental validation. Methods and protocols, 4(1), 1.
69. Ritchie, W., Rajasekhar, M., Flamant, S., and Rasko, J. E. (2009). Conserved expression patterns predict microRNA targets. PLoS computational biology, 5(9), e1000513.
70. Ritchie, W., Rasko, J. E., and Flamant, S. (2013). MicroRNA target prediction and validation. In MicroRNA cancer regulation, (pp39-53). Dordrecht, Springer.
71. Rojas, A. M., Drusin, S. I., Chorostecki, U., Mateos, J. L., Moro, B., Bologna, N. G., ... and Palatnik, J. F. (2020). Identification of key sequence features required for microRNA biogenesis in plants. Nature communications, 11(1), 1-11.
72. Salcedo, A., Al-Haddad, J., Buell, C. R., Trail, F., Góngora-Castillo, E., and Quesada-Ocampo, L. (2021). Comparative Transcriptome Analysis of Two Contrasting Maize Inbred Lines Provides Insights on Molecular Mechanisms of Stalk Rot Resistance. PhytoFrontiers™, 1(4), 314-329.
73. Santos-Rodríguez, J., Coy-Barrera, E., and Ardila, H. D. (2021). Mycelium Dispersion from Fusarium oxysporum f. sp. dianthi Elicits a Reduction of Wilt Severity and Influences Phenolic Profiles of Carnation (Dianthus caryophyllus L.) Roots. Plants, 10(7), 1447.
74. Scovel, G., Men-Meir, H. and Ovadis, M. (1998). rapd and rflp markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor. Appl. Genet, 96, 117-122.
75. Scovel, G., Ovadis, M., Vainstein, A. Reuven, M. and Ben-Yephet, Y. (2001). Marker assisted selection for resistance to Fusarium oxysporum in the greenhouse carnation. Acta Horticulturae, 552, 151-156
76. Silverstein, P. S., Buch, S. J., and Curtis Bird, R. (2002). Strategies for cDNA Cloning and Mapping RNA Transcripts. In Genetic Library Construction and Screening (pp. 3-19). Berlin, Heidelberg, Springer.
77. Srivastava, P. K., Moturu, T. R., Pandey, P., Baldwin, I. T., and Pandey, S. P. (2014). A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC genomics, 15(1), 1-15.
78. Stepien, A., Knop, K., Dolata, J., Taube, M., Bajczyk, M., Barciszewska-Pacak, M., Pacak, A., Jarmolowski, A., and Szweykowska-Kulinska, Z. (2017). Posttranscriptional coordination of splicing and miRNA biogenesis in plants. RNA, 8(3), e1403.
79. Summerell, B. A. (2019). Resolving Fusarium: current status of the genus. Annual Review of Phytopathology, 57, 323-339.
80. Sun, Z. F., Guo, T. T., Liu, Y., Liu, Q., and Fang, Y. D. (2015). The Roles of Arabidopsis CDF2 in transcriptional and posttranscriptional regulation of primary MicroRNAs. PLoS Genet. 11, e1005598.
81. Taheri, S., Lee Abdullah, T., Yusop, M. R., Hanafi, M. M., Sahebi, M., Azizi, P., and Shamshiri, R. R. (2018). Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules, 23(2), 399.
82. Tanase, K., Nishitani, C., Hirakawa, H., Isobe, S., Tabata, S., Ohmiya, A., and Onozaki, T. (2012). Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics, 13(1), 1–11.
83. Tomkowiak, A., Jędrzejewski, T., Spychała, J., Kuczyński, J., Kwiatek, M. T., Tyczewska, A., and Twardowski, T. (2020). Analysis of miRNA expression associated with the Lr46 gene responsible for APR resistance in wheat (Triticum aestivum L.). Journal of Applied Genetics, 61(4), 503-511.
84. Vannozzi, A., Dry, I. B., Fasoli, M., Zenoni, S., and Lucchin, M. (2012). Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC plant biology, 12(1), 1-22.
85. Villa, M A., Pérez, L, R., Morales M, H. A., Basurto S, M., Soto P, J. M., y Martínez E, E. (2015). Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica, 64(2), 194-205.
86. Villacorta-Martín, C., Sánchez-García, A. B., Villanova, J., Cano, A., van de Rhee, M., de Haan, J., and Pérez-Pérez, J. M. (2015). Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC genomics, 16(1), 1-18.
87. Vlot, A. C., Dempsey, D. M. A., and Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of phytopathology, 47, 177-206.
88. Wang, J., Chen, J., and Sen, S. (2016). MicroRNA as biomarkers and diagnostics. Journal of cellular physiology, 231(1), 25-30.
89. Wang, J., Mei, J., and Ren, G. (2019). Plant microRNAs: Biogenesis, homeostasis, and degradation. Frontiers in Plant Science, 10, 360.
90. Wang, L. L., Song, X. W., Gu, L. F., Li, X., Cao, S. Y., Chu, C. C., et al. (2013). NOT2 Proteins Promote Polymerase II-Dependent Transcription and Interact with Multiple MicroRNA Biogenesis Factors in Arabidopsis. Plant Cell, 25, 715–727.
91. Wang, S., Quan, L., Li, S., You, C., Zhang, Y., Gao, L., and Chen, X. (2019). The PROTEIN PHOSPHATASE4 complex promotes transcription and processing of primary microRNAs in Arabidopsis. The Plant Cell, 31(2), 486-501.
92. Wang, X. J., Gaasterland, T., and Chua, N. H. (2005). Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome biology, 6(4), 1-11.
93. Wayment-Steele, H. K., Kladwang, W., Strom, A. I., Lee, J., Treuille, A., Participants, E., and Das, R. (2021). RNA secondary structure packages evaluated and improved by high-throughput experiments. BioRxiv, 20, 5-20.
94. Whealy, C. A. (1992). Carnations. In Introduction to floriculture. Academic Press, 43-65
95. Wu, H., Li, B., Iwakawa, H. O., Pan, Y., Tang, X., Ling-Hu, Q., and Guo, H. (2020). Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature, 581(7806), 89-93.
96. Xu, J., Xian, Q., Zhang, N., Wang, K., Zhou, X., Li, Y., and Chen, X. (2021). Identification of miRNA-Target Gene Pairs Responsive to Fusarium Wilt of Cucumber via an Integrated Analysis of miRNA and Transcriptome Profiles. Biomolecules, 11(11), 1620.
97. Yadeta, K. A., and J. Thomma, B. P. (2013). The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in plant science, 4, 97.
100 Yagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., and Tabata, S. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231-241.
101 Yagi, M., Onozaki, T., Taneya, M., Watanabe, H., Yoshimura, T., Yoshinari, T., Ochiai, Y. and Shibata, M. (2006). Construction of a Genetic Linkage Map for the Carnation by Using RAPD and SSR Markers and Mapping Quantitative Trait Loci (QTL) for Resistance to Bacterial Wilt Caused by Burkholderia caryophylli. J. Japan. Soc. Hort. Sci, 75(2), 166–172.
102 Yu, N., Yong, S., Kim, H. K., Choi, Y. L., Jung, Y., Kim, D., and Lee, S. (2019). Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor–normal samples in lung adenocarcinoma. Molecular oncology, 13(6), 1356-1368.
103 Zhang, L., Xiang, Y., Chen, S., Shi, M., Jiang, X., He, Z., and Gao, S. (2022). Mechanisms of MicroRNA Biogenesis and Stability Control in Plants. Frontiers in Plant Science, 13, 844149.
104 Zhang, S. X., Xie, M., Ren, G. D., and Yu, B. (2013). CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc. Natl. Acad. Sci. U.S.A, 110, 17588–17593.
105 Zhang, Y., Yun, Z., Gong, L., Qu, H., Duan, X., Jiang, Y., and Zhu, H. (2018). Comparison of miRNA evolution and function in plants and animals. Microrna, 7(1), 4-10.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.accessrights.*.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-NoDerivatives 4.0 International
Acceso abierto
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv applicaction/pdf
dc.coverage.sede.spa.fl_str_mv Campus UMNG
dc.publisher.program.spa.fl_str_mv Biología Aplicada
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv http://repository.unimilitar.edu.co/bitstream/10654/44529/2/license.txt
http://repository.unimilitar.edu.co/bitstream/10654/44529/1/MoralesVillanuevaCarlosAlberto2022.pdf
bitstream.checksum.fl_str_mv a609d7e369577f685ce98c66b903b91b
75179854a615c0434a5a81e321183854
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1808418021254889472
spelling Morales Villanueva, Carlos AlbertoBiólogo2023-06-13T20:01:03Z2023-06-13T20:01:03Z2022-11-21http://hdl.handle.net/10654/44529instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.unimilitar.edu.coLa producción de clavel a nivel mundial sufre grandes pérdidas por el marchitamiento vascular causado por el patógeno Fod (Fusarium oxysporum f. sp. dianthi). Por lo que Los trabajos relacionados con el mecanismo de respuesta de variedades naturalmente resistentes, podría ser el primer paso para la producción de variedades comerciales resistentes a Fod. En este estudio se fabricaron librerías de miRNA de dos variedades. 395 resistente y SH2 susceptible a Fod, en dos tratamientos: antes de la elicitación y después de la elicitación. Se encontraron miRNAs putativos que regulan la expresión de alguno de los 35 genes muestra. Estos genes muestran variaciones importantes en sus niveles de expresión durante la elicitación con Fod. Esto se determinó en trabajos anteriores en el laboratorio de Biotecnología vegetal de la Universidad Militar Nueva Granada. Estos miRNAs fueron validados y su perfil de control postranscripcional fue relacionado con el mecanismo de respuesta de ambas variedades. Se encontró que ambas variedades responden mediante el mismo perfil de control postranscripcional y tienen un mecanismo de respuesta similar. Sin embargo, 395 controla postranscripcionalmente los genes adecuados en el momento oportuno para responder de manera efectiva. Mientras que SH2 no tiene esa misma eficiencia, lo que no le permite ser oportuno en la respuesta ante Fod. Se proponen 84 miRNAs putativos en total que están controlando los mecanismos de expresión de 26 de los 35 genes al momento de la elicitación. Realizar experimentos de “Knock out” o “Knock down” sobre estos 84 miRNAs podría mostrar perdida o ganancia de resistencia a Fod, lo que permitiría concluir que estos miRNAs son claves para el mecanismo de respuesta de variedades resistentes de clavel ante Fod.Carnation production worldwide suffers great losses due to vascular wilt caused by the pathogen Fod (Fusarium oxysporum f. sp. dianthi). Therefore, the work related to the response mechanism of naturally resistant varieties could be the first step to produce commercial varieties naturally resistant to Fod. In this study, miRNA libraries of two varieties were fabricated. 395 resistant and SH2 susceptible, in two treatments: before elicitation and after elicitation. Putative miRNAs that regulate the expression of some of the 35 sample genes were found. These genes show important variations in their expression levels upon chemical contact with Fod. This was determined in previous works in the phytopathology laboratory of the Universidad Militar Nueva Granada. These miRNAs were validated, and their post-transcriptional control profile was related to the response mechanism of both varieties. Both strains were found to respond through the same post-transcriptional control profile and have a similar response mechanism. However, 395 is more efficient in its post-transcriptional control effort, controlling the appropriate genes to respond effectively. While SH2 does not have the same efficiency, which does not allow it to be timely in response to Fod. A total of 84 putative miRNAs are proposed that are controlling the expression mechanisms of 26 of the 35 genes at the time of elicitation. Performing "Knock out" or "Knock down" experiments on these 84 miRNAs can show loss or gain of resistance to Fod, which would allow us to conclude that these miRNAs are key to the response mechanism of carnation resistant varieties to Fod.Pregradoapplicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertoReconocimiento de miRNAs y su relación con la expresión de genes de clavel (Dianthus caryophyllus) involucrados en la respuesta al patógeno Fusarium oxysporum f. sp. dianthiRecognition of miRNAs and their relationship with the expression of carnation (Dianthus caryophyllus) genes involved in the response to the pathogen Fusarium oxysporum f. sp. dianthiTesis/Trabajo de grado - Monografía - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fmiRNACarnationFusarium oxysporumDianthus caryophyllusFUSARIUM OXYSPORUMDIANTHUS CARYOPHYLLUSORGANISMOS PATOGENOSmiARNClavelFusarium oxysporumDianthus caryophyllusBiología AplicadaFacultad de Ciencias BásicasUniversidad Militar Nueva Granada1. Agrios, G. N. (1997). Control of plant diseases. San Diego, Academic Press.2. Arai, M., and Takeuchi, M. (1993). Influence of Fusarium wilt toxin (s) on carnation cells. Plant cell, tissue and organ culture, 34(3), 287-293.3. Bailey, L. H. (1942). The Standard Cyclopedia of Horticulture. New York, Macmillan Company.4. Barciszewska-Pacak, M., Milanowska, K., Knop, K., Bielewicz, D., Nuc, P., Plewka, P., and Szweykowska-Kulinska, Z. (2015). Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Frontiers in plant science, 6, 410.5. Bartel, D. P. (2004). MicroRANs: Genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.6. Baulcombe, D. (2005). RNA silencing. Trends in biochemical sciences, 30(6), 290-293.7. Ben yephet, Y., Reuven, M. and Shtienberg, D. (1997). Complete resistance by carnation cultivars to Fusarium wilt induced by Fusarium oxysporum f.sp. dianthi race 2. Plant Disease 81(7), 777-780.8. Benavides, J.L., Garcés, E., Arbeláez, G. y Dukuara, F. (1995). Determinación de razas fisiológicas de Fusarium oxysporum f. sp. dianthi en suelos cultivados y en variedades de clavel en la finca “Flores las Palmas”. Agronomía colombiana. 12(1), 21-26.9. Berger, S., Benediktyová, Z., Matouš, K., Bonfig, K., Mueller, J, M., Nedbal, L., and Roitsch, T. (2007). Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent. Journal of Experimental Botany, 58(4), 797-806.10. Borsani, O., Zhu, J., Verslues, P. E., Sunkar, R., and Zhu, J. K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123(7), 1279-1291.11. Buiatti, M., Scala, A., Bettini, P., Nascari, G., Morpurgo, R., Bogani, P., and Venturo, R. (1985). Correlations between in vivo resistance to Fusarium and in vitro response to fungal elicitors and toxic substances in carnation. Theoretical and Applied Genetics, 70(1), 42-47.12. Cai, Q., Liang, C., Wang, S. K., Hou, Y. N., Gao, L., Liu, L., et al. (2018). The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nat. Commun. 9, 5080.13. Cao, C., Long, R., Zhang, T., Kang, J., Wang, Z., Wang, P., and Yang, Q. (2018). Genome-wide identification of microRNAs in response to salt/alkali stress in Medicago truncatula through high-throughput sequencing. International journal of molecular sciences, 19(12), 4076.14. Charng, Y.-Y., Sun, C.-W., Yan, S.-L., Chou, S.-J., Chen, Y.-R., and Yang, S.F. (1998). cADN sequence of a putative ethylene receptor from carnation petals. Plant Physiology. 115, 863.15. Chen, L., Ren, Y., Zhang, Y., Xu, J., Zhang, Z., and Wang, Y. (2012). Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta, 235(5), 873-883.16. Cheng, J., Zhuo, H., Xu, M., Wang, L., Xu, H., Peng, J., and Cai, J. (2018). Regulatory network of circRNA–miRNA–mRNA contributes to the histological classification and disease progression in gastric cancer. Journal of translational medicine, 16(1), 1-14.17. Cifras de floricultura Colombiana - Ceniflores. (n.d.). Retrieved November 19, 2020, from https://ceniflores.org/cifras-de-floricultura-colombiana/18. Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., and Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome biology, 17(1), 1-19.19. Curir, P., Dolci, M. and GaleottI, F. (2005). A phytoalexin-like flavonol envolved in the carnation (Dianthus caryophyllus) - Fusarium oxysporum f. sp. dianthi pathosystem. J. Phytopathology 153, 65-67.20. Debbi, A., Boureghda, H., Monte, E., and Hermosa, R. (2018). Distribution and genetic variability of Fusarium oxysporum associated with tomato diseases in Algeria and a biocontrol strategy with indigenous Trichoderma spp. Frontiers in microbiology, 9, 282.21. Di pietro, A, Madrid, M, P., Caracuel, Z., Delgado, J. and Roncero, M. (2003). Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology. 4(5), 315-325.22. Edel-Hermann, V., and Lecomte, C. (2019). Current status of fusarium oxysporum formae speciales and races. Phytopathology, 109(4), 512–530.23. Fahlgren, N., and Carrington, J.C. (2010). miRNA Target Prediction in Plants. In: Meyers, B., Green, P. (eds) Plant MicroRNAs. Methods in Molecular Biology, vol 592. Humana Press.24. Fang, X. F., Cui, Y. W., Li, Y. X., and Qi, Y. J. (2015). Transcription and processing of primary microRNAs are coupled by Elongator complex in Arabidopsis. Nat. Plants, 1, 15075.25. Filgueira, J. 2011. Experiencias en mejoramiento del clavel (Diantus caryophyllus). Bogota, Universidad Militar Nueva Granada.26. Gao, Z., Nie, J., and Wang, H. (2020). MicroRNA biogenesis in plant. Plant Growth Regulation 2020, 93(1), 1–12.27. Gasco, M. J., Cortés, J. N., y Díaz, R. J. (2005). Evolución de Fusarium oxysporum f. sp. ciceris, el agente de la Fusariosis vascular del garbanzo, en razas patogénicas y patotipos. Boletín de sanidad vegetal. Plagas, 31(1), 59-70.28. Gebert, L. F., and MacRae, I. J. (2019). Regulation of microRNA function in animals. Nature reviews Molecular cell biology, 20(1), 21-37.29. Goswami, R. S., and Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum on cereal crops. Molecular plant pathology, 5(6), 515-525.30. Gubler, U., and Hoffman, B. J. (1983). A simple and very efficient method for generating cDNA libraries. Gene, 25(2-3), 263-269.31. Hajheidari, M., Farrona, S., Huettel, B., Koncz, Z., and Koncz, C. (2012). CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. Plant Cell, 24, 1626–1642.32. Hao, Z., Liu, D., Gong, S., Zhao, D., and Tao, J. (2017). High throughput sequencing of herbaceous peony small RNAs to screen thermos-tolerance-related microRNAs. Genes and Genomics, 39(4), 397-408.33. Head, S. R., Komori, H. K., LaMere, S. A., Whisenant, T., Van Nieuwerburgh, F., Salomon, D. R., and Ordoukhanian, P. (2014). Library construction for next-generation sequencing: overviews and challenges. Biotechniques, 56(2), 61-77.34. Holley, W. D., and Baker, R. (1963). Carnation Production. Carnation Production. London, Grower Publications Ltd.35. Huang, P. Y., Catinot, J., and Zimmerli, L. (2016). Ethylene response factors in Arabidopsis immunity. Journal of experimental botany, 67(5), 1231-1241.36. Huang, Y., Zou, Q., Song, H., Song, F., Wang, L., Zhang, G., and Shen, X. (2010). A study of miRNAs targets prediction and experimental validation. Protein & cell, 1(11), 979-986.37. Husaini, A. M., Sakina, A., and Cambay, S. R. (2018). Host–pathogen interaction in Fusarium oxysporum infections: where do we stand?. Molecular Plant-Microbe Interactions, 31(9), 889-898.38. Jain, D., and Khurana, J. P. (2018). Role of pathogenesis-related (PR) proteins in plant defense mechanism. In Molecular aspects of plant-pathogen interaction (pp. 265-281). Singapore, Springer.39. Jebessa, E., Ouyang, H., Abdalla, B. A., Li, Z., Abdullahi, A. Y., Liu, Q., and Zhang, X. (2018). Characterization of miRNA and their target gene during chicken embryo skeletal muscle development. Oncotarget, 9(25), 17309.40. Joshi, R. (2018). A review of Fusarium oxysporum on its plant interaction and industrial use. J. Med. Plants Stud, 6(3), 112-115.41. Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D., Borsani, O., Villegas, A., Zhu, J. K., and Jin, H. (2006). A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences, 103(47), 18002-18007.42. Kreuze, J. (2014). siRNA deep sequencing and assembly: piecing together viral infections. In Detection and diagnostics of plant pathogens (pp. 21-38). Dordrecht, Springer.43. Kuhn, D. E., Martin, M. M., Feldman, D. S., Terry Jr, A. V., Nuovo, G. J., and Elton, T. S. (2008). Experimental validation of miRNA targets. Methods, 44(1), 47-54.44. Kulcheski, F. R., de Oliveira, L. F., Molina, L. G., Almerão, M. P., Rodrigues, F. A., Marcolino, J., and Margis, R. (2011). Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC genomics, 12(1), 1-17.45. Kumar, I. S., Cheah, B. H., and Nadarajah, K. (2017). In silico identification and classification of disease resistance genes and defense-related genes against sheath blight from QTL qSBR11-1 in rice (Oryza sativa L.). Undergrad. Res. J. Integ. Biol, 1(8).46. Lawton, K., Huang, B., Goldsbrough, P. and Woodson, W. (1989). Molecular cloning and characterization of senescence related-genes from carnation flower petals. Plant Physiology, 90, 690-696.47. Lawton, K., Raghotama, K., Goldsbrough, P. and Woodson, W. (1990). Regulation of senescence-related gene expression in carnation flower petals by ethylene. Plant Physiology, 93, 1370-1375.48. Li, M., and Yu, B. (2021). Recent advances in the regulation of plant miRNA biogenesis. RNA biology, 18(12), 2087-2096.49. Liu, X., Tan, C., Cheng, X., Zhao, X., Li, T., and Jiang, J. (2020). miR168 targets Argonaute1A mediated miRNAs regulation pathways in response to potassium deficiency stress in tomato. BMC plant biology, 20(1), 1-17.50. Lombard, L., Sandoval-Denis, M., Lamprecht, S. C., and Crous, P. W. (2019). Epitypification of Fusarium oxysporum - clearing the taxonomic chaos. Persoonia - Molecular Phylogeny and Evolution of Fungi, 43, 1-47.51. Marguerat, S., and Bähler, J. (2010). RNA-seq: from technology to biology. Cellular and molecular life sciences, 67(4), 569-579.52. Martinez Gonzalez, A. P. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi. Tesis doctoral. Universidad nacional de colombia.53. McGeorge, P., and Hammett, K. (2002). Carnations and Pinks. Willowdale, Ont, Firefly Books.54. McTaggart, A. R., James, T. Y., Shivas, R. G., Drenth, A., Wingfield, B. D., Summerell, B. A., and Duong, T. A. (2021). Population genomics reveals historical and ongoing recombination in the Fusarium oxysporum species complex. Studies in mycology, 99, 100132.55. Meng, X. and Zhang, S. (2013). MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol, 51, 245-66.56. Michlewski, G., and Cáceres, J. F. (2019). Post-transcriptional control of miRNA biogenesis. Rna, 25(1), 1-16.57. Nair, M. M., and Manickavelu, A. (2020). MicroRNAs as fine-tuners of gene regulation in plant–microbe interactions. Current Science, 8, 1282.58. Narjala, A., Nair, A., Tirumalai, V., Hari Sundar, G. V., and Shivaprasad, P. V. (2020). A conserved sequence signature is essential for robust plant miRNA biogenesis. Nucleic acids research, 48(6), 3103-3118.59. Nelson, P. E., Toussoun, T. A., and Marasas, W. F. O. (1983). Fusarium species: an illustrated manual for identification. University Park, PA, Penn State University.60. O'Donnell, K., Kistler, H. C., Cigelnik, E., and Ploetz, R. C. (1998). Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad, 95, 2044–2049.61. Ok, S. H., Park, H. M., Kim, J. Y., Bahn, S. C., Bae, J. M., Suh, M. C., and Shin, J. S. (2003). Identification of differentially expressed genes during flower development in carnation (Dianthus caryophyllus). Plant Science, 165(2), 291-297.62. Pandey, P., Srivastava, P. K., and Pandey, S. P. (2019). Prediction of plant miRNA targets. In Plant MicroRNAs (pp. 99-107). New York, NY, Humana Press.63. Paul, S., Datta, S. K., and Datta, K. (2015). miRNA regulation of nutrient homeostasis in plants. Frontiers in plant science, 6, 232.64. Pegler, J. L., Grof, C. P., and Eamens, A. L. (2018). Profiling of the differential abundance of drought and salt stress-responsive microRNAs across grass crop and genetic model plant species. Agronomy, 8(7), 118.65. Pizano de Márquez, M. (2000). Clavel Dianthus caryophyllus. Bogotá, Hortitecnia Ltda.66. Prigge, M. J., and Wagner, D. R. (2001). The Arabidopsis SERRATE Gene Encodes a Zinc-Finger Protein Required for Normal Shoot Development. The Plant Cell, 13(6), 1263–1280.67. Pyo, Y., Kim, G. M., Choi, S. W., Song, C. Y., Yang, S. W., and Jung, I. L. (2020). Strontium stress disrupts miRNA biogenesis by reducing HYL1 protein levels in Arabidopsis. Ecotoxicology and Environmental Safety. 204, 111056.68. Riolo, G., Cantara, S., Marzocchi, C., and Ricci, C. (2020). miRNA targets: from prediction tools to experimental validation. Methods and protocols, 4(1), 1.69. Ritchie, W., Rajasekhar, M., Flamant, S., and Rasko, J. E. (2009). Conserved expression patterns predict microRNA targets. PLoS computational biology, 5(9), e1000513.70. Ritchie, W., Rasko, J. E., and Flamant, S. (2013). MicroRNA target prediction and validation. In MicroRNA cancer regulation, (pp39-53). Dordrecht, Springer.71. Rojas, A. M., Drusin, S. I., Chorostecki, U., Mateos, J. L., Moro, B., Bologna, N. G., ... and Palatnik, J. F. (2020). Identification of key sequence features required for microRNA biogenesis in plants. Nature communications, 11(1), 1-11.72. Salcedo, A., Al-Haddad, J., Buell, C. R., Trail, F., Góngora-Castillo, E., and Quesada-Ocampo, L. (2021). Comparative Transcriptome Analysis of Two Contrasting Maize Inbred Lines Provides Insights on Molecular Mechanisms of Stalk Rot Resistance. PhytoFrontiers™, 1(4), 314-329.73. Santos-Rodríguez, J., Coy-Barrera, E., and Ardila, H. D. (2021). Mycelium Dispersion from Fusarium oxysporum f. sp. dianthi Elicits a Reduction of Wilt Severity and Influences Phenolic Profiles of Carnation (Dianthus caryophyllus L.) Roots. Plants, 10(7), 1447.74. Scovel, G., Men-Meir, H. and Ovadis, M. (1998). rapd and rflp markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor. Appl. Genet, 96, 117-122.75. Scovel, G., Ovadis, M., Vainstein, A. Reuven, M. and Ben-Yephet, Y. (2001). Marker assisted selection for resistance to Fusarium oxysporum in the greenhouse carnation. Acta Horticulturae, 552, 151-15676. Silverstein, P. S., Buch, S. J., and Curtis Bird, R. (2002). Strategies for cDNA Cloning and Mapping RNA Transcripts. In Genetic Library Construction and Screening (pp. 3-19). Berlin, Heidelberg, Springer.77. Srivastava, P. K., Moturu, T. R., Pandey, P., Baldwin, I. T., and Pandey, S. P. (2014). A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC genomics, 15(1), 1-15.78. Stepien, A., Knop, K., Dolata, J., Taube, M., Bajczyk, M., Barciszewska-Pacak, M., Pacak, A., Jarmolowski, A., and Szweykowska-Kulinska, Z. (2017). Posttranscriptional coordination of splicing and miRNA biogenesis in plants. RNA, 8(3), e1403.79. Summerell, B. A. (2019). Resolving Fusarium: current status of the genus. Annual Review of Phytopathology, 57, 323-339.80. Sun, Z. F., Guo, T. T., Liu, Y., Liu, Q., and Fang, Y. D. (2015). The Roles of Arabidopsis CDF2 in transcriptional and posttranscriptional regulation of primary MicroRNAs. PLoS Genet. 11, e1005598.81. Taheri, S., Lee Abdullah, T., Yusop, M. R., Hanafi, M. M., Sahebi, M., Azizi, P., and Shamshiri, R. R. (2018). Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules, 23(2), 399.82. Tanase, K., Nishitani, C., Hirakawa, H., Isobe, S., Tabata, S., Ohmiya, A., and Onozaki, T. (2012). Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics, 13(1), 1–11.83. Tomkowiak, A., Jędrzejewski, T., Spychała, J., Kuczyński, J., Kwiatek, M. T., Tyczewska, A., and Twardowski, T. (2020). Analysis of miRNA expression associated with the Lr46 gene responsible for APR resistance in wheat (Triticum aestivum L.). Journal of Applied Genetics, 61(4), 503-511.84. Vannozzi, A., Dry, I. B., Fasoli, M., Zenoni, S., and Lucchin, M. (2012). Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC plant biology, 12(1), 1-22.85. Villa, M A., Pérez, L, R., Morales M, H. A., Basurto S, M., Soto P, J. M., y Martínez E, E. (2015). Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agronómica, 64(2), 194-205.86. Villacorta-Martín, C., Sánchez-García, A. B., Villanova, J., Cano, A., van de Rhee, M., de Haan, J., and Pérez-Pérez, J. M. (2015). Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC genomics, 16(1), 1-18.87. Vlot, A. C., Dempsey, D. M. A., and Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual review of phytopathology, 47, 177-206.88. Wang, J., Chen, J., and Sen, S. (2016). MicroRNA as biomarkers and diagnostics. Journal of cellular physiology, 231(1), 25-30.89. Wang, J., Mei, J., and Ren, G. (2019). Plant microRNAs: Biogenesis, homeostasis, and degradation. Frontiers in Plant Science, 10, 360.90. Wang, L. L., Song, X. W., Gu, L. F., Li, X., Cao, S. Y., Chu, C. C., et al. (2013). NOT2 Proteins Promote Polymerase II-Dependent Transcription and Interact with Multiple MicroRNA Biogenesis Factors in Arabidopsis. Plant Cell, 25, 715–727.91. Wang, S., Quan, L., Li, S., You, C., Zhang, Y., Gao, L., and Chen, X. (2019). The PROTEIN PHOSPHATASE4 complex promotes transcription and processing of primary microRNAs in Arabidopsis. The Plant Cell, 31(2), 486-501.92. Wang, X. J., Gaasterland, T., and Chua, N. H. (2005). Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome biology, 6(4), 1-11.93. Wayment-Steele, H. K., Kladwang, W., Strom, A. I., Lee, J., Treuille, A., Participants, E., and Das, R. (2021). RNA secondary structure packages evaluated and improved by high-throughput experiments. BioRxiv, 20, 5-20.94. Whealy, C. A. (1992). Carnations. In Introduction to floriculture. Academic Press, 43-6595. Wu, H., Li, B., Iwakawa, H. O., Pan, Y., Tang, X., Ling-Hu, Q., and Guo, H. (2020). Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature, 581(7806), 89-93.96. Xu, J., Xian, Q., Zhang, N., Wang, K., Zhou, X., Li, Y., and Chen, X. (2021). Identification of miRNA-Target Gene Pairs Responsive to Fusarium Wilt of Cucumber via an Integrated Analysis of miRNA and Transcriptome Profiles. Biomolecules, 11(11), 1620.97. Yadeta, K. A., and J. Thomma, B. P. (2013). The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in plant science, 4, 97.100 Yagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., and Tabata, S. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231-241.101 Yagi, M., Onozaki, T., Taneya, M., Watanabe, H., Yoshimura, T., Yoshinari, T., Ochiai, Y. and Shibata, M. (2006). Construction of a Genetic Linkage Map for the Carnation by Using RAPD and SSR Markers and Mapping Quantitative Trait Loci (QTL) for Resistance to Bacterial Wilt Caused by Burkholderia caryophylli. J. Japan. Soc. Hort. Sci, 75(2), 166–172.102 Yu, N., Yong, S., Kim, H. K., Choi, Y. L., Jung, Y., Kim, D., and Lee, S. (2019). Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor–normal samples in lung adenocarcinoma. Molecular oncology, 13(6), 1356-1368.103 Zhang, L., Xiang, Y., Chen, S., Shi, M., Jiang, X., He, Z., and Gao, S. (2022). Mechanisms of MicroRNA Biogenesis and Stability Control in Plants. Frontiers in Plant Science, 13, 844149.104 Zhang, S. X., Xie, M., Ren, G. D., and Yu, B. (2013). CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts. Proc. Natl. Acad. Sci. U.S.A, 110, 17588–17593.105 Zhang, Y., Yun, Z., Gong, L., Qu, H., Duan, X., Jiang, Y., and Zhu, H. (2018). Comparison of miRNA evolution and function in plants and animals. Microrna, 7(1), 4-10.Campus UMNGLICENSElicense.txtlicense.txttext/plain; charset=utf-83420http://repository.unimilitar.edu.co/bitstream/10654/44529/2/license.txta609d7e369577f685ce98c66b903b91bMD52open accessORIGINALMoralesVillanuevaCarlosAlberto2022.pdfMoralesVillanuevaCarlosAlberto2022.pdfTrabajo de gradoapplication/pdf1808588http://repository.unimilitar.edu.co/bitstream/10654/44529/1/MoralesVillanuevaCarlosAlberto2022.pdf75179854a615c0434a5a81e321183854MD51open access10654/44529oai:repository.unimilitar.edu.co:10654/445292023-06-13 15:01:04.905open accessRepositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K