Diseño óptimo de un mecanismo paralelo enfocado en manufactura aditiva

La manufactura aditiva es una técnica cuyo principio técnico es la adición de capas de material para fabricar piezas. Aunque se han hecho estudios en pro de su mejora en aspectos de deposición, control de temperatura, flujos y movimientos, estos últimas aún presentan retos a superar. Las máquinas co...

Full description

Autores:
Nuñez Vallejos, Diego Alejandro
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.unimilitar.edu.co:10654/45172
Acceso en línea:
http://hdl.handle.net/10654/45172
Palabra clave:
INDUSTRIAS MANUFACTURERAS
MANUFACTURAS
Parallel mechanism
Optimization
Additive manufacturing
Tridimensional printing
Mecanismo paralelo
Optimización
manufactura aditiva
impresión tridimensional
Rights
openAccess
License
Open Access
id UNIMILTAR2_6ec3be26719953abbe8b5829ae9096d6
oai_identifier_str oai:repository.unimilitar.edu.co:10654/45172
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Diseño óptimo de un mecanismo paralelo enfocado en manufactura aditiva
dc.title.translated.spa.fl_str_mv Optimal design of a parallel mechanism focused on additive manufacturing
title Diseño óptimo de un mecanismo paralelo enfocado en manufactura aditiva
spellingShingle Diseño óptimo de un mecanismo paralelo enfocado en manufactura aditiva
INDUSTRIAS MANUFACTURERAS
MANUFACTURAS
Parallel mechanism
Optimization
Additive manufacturing
Tridimensional printing
Mecanismo paralelo
Optimización
manufactura aditiva
impresión tridimensional
title_short Diseño óptimo de un mecanismo paralelo enfocado en manufactura aditiva
title_full Diseño óptimo de un mecanismo paralelo enfocado en manufactura aditiva
title_fullStr Diseño óptimo de un mecanismo paralelo enfocado en manufactura aditiva
title_full_unstemmed Diseño óptimo de un mecanismo paralelo enfocado en manufactura aditiva
title_sort Diseño óptimo de un mecanismo paralelo enfocado en manufactura aditiva
dc.creator.fl_str_mv Nuñez Vallejos, Diego Alejandro
dc.contributor.advisor.spa.fl_str_mv Mauledoux, Mauricio
dc.contributor.author.none.fl_str_mv Nuñez Vallejos, Diego Alejandro
dc.contributor.other.spa.fl_str_mv Avilés, Oscar
dc.subject.lemb.spa.fl_str_mv INDUSTRIAS MANUFACTURERAS
MANUFACTURAS
topic INDUSTRIAS MANUFACTURERAS
MANUFACTURAS
Parallel mechanism
Optimization
Additive manufacturing
Tridimensional printing
Mecanismo paralelo
Optimización
manufactura aditiva
impresión tridimensional
dc.subject.keywords.spa.fl_str_mv Parallel mechanism
Optimization
Additive manufacturing
Tridimensional printing
dc.subject.proposal.spa.fl_str_mv Mecanismo paralelo
Optimización
manufactura aditiva
impresión tridimensional
description La manufactura aditiva es una técnica cuyo principio técnico es la adición de capas de material para fabricar piezas. Aunque se han hecho estudios en pro de su mejora en aspectos de deposición, control de temperatura, flujos y movimientos, estos últimas aún presentan retos a superar. Las máquinas convencionales tienen movimientos cartesianos que genera dificultades relacionados con el acabado, con los requerimientos isotrópicos, con la unión de capas, con el uso de material de soporte, con las bajas velocidades de impresión y con la imposibilidad de imprimir alrededor de obstáculos. Con el fin de mejorar estos aspectos, algunos desarrollos han usado mecanismos paralelos como base de movimiento; sin embargo, las técnicas convencionales de diseño estos mecanismos se han concentrado en dividir esta etapa en fases. Usualmente, se concentran los primeros esfuerzos en los requerimientos estructurales y geométricos, para luego pasar a la fase de control. El resultado de esto son mecanismos sobredimensionados con altos requerimientos energéticos y costos elevados. Por tal motivo es necesario desarrollar un mecanismo paralelo que incremente la multidireccionalidad del sistema y optimice los requerimientos volumétricos, con movimientos suaves, demanda energética pequeña y buena precisión de movimientos. Por tal motivo, se planteó una estrategia de diseño considerando aspectos como:el análisis cinemático y dinámico del mecanismo; un espacio de trabajo computacionalmente eficiente debido a sus características discretas y técnicas de búsqueda;un nuevo índice de manipulabilidad; una estrategia de control robusta donde se examinen sus errores y esfuerzos de control; indicadores de desempeño energético y de eficiencia de control y el planteamiento de funciones objetivo que junto con sus restricciones fueron evaluadas paralelamente en algoritmos metaheurísticos de optimización. Esta estrategia de diseño no solo logró obtener un mecanismo paralelo con seis grados de libertad, llamado HEXA, para su implementación en manufactura aditiva, sino que, presentó nuevas formas de análisis y control de mecanismos de cinemática paralela que involucran análisis y desarrollos geométrico, de movimiento y de control. Finalmente, la metodología empleada puede ser la base para el análisis, diseño y optimización otros mecanismos paralelos y hace que ésta forma de diseño tenga el potencial de crear nuevas investigaciones, profesiones, industrias y empleos; impactando la academia y la industria.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-14T14:33:16Z
dc.date.available.none.fl_str_mv 2023-11-14T14:33:16Z
dc.date.issued.none.fl_str_mv 2023
dc.type.local.spa.fl_str_mv Doctoral
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.coar.*.fl_str_mv http://purl.org/coar/resource_type/c_db06
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10654/45172
dc.identifier.instname.spa.fl_str_mv instname:Universidad Militar Nueva Granada
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unimilitar.edu.co
url http://hdl.handle.net/10654/45172
identifier_str_mv instname:Universidad Militar Nueva Granada
reponame:Repositorio Institucional Universidad Militar Nueva Granada
repourl:https://repository.unimilitar.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] M. Baumers, P. Dickens, C. Tuck, and R. Hague, “The cost of additive manufacturing: Machine productivity, economies of scale and technology-push,” Technol. Forecast. Soc. Change, vol. 102, 2016, doi: 10.1016/j.techfore.2015.02.015.
[2] W. Gao et al., “The status, challenges, and future of additive manufacturing in engineering,” CAD Comput. Aided Des., vol. 69, pp. 65–89, 2015, doi: 10.1016/j.cad.2015.04.001.
[3] Y. Jin, J. Du, Y. He, and G. Fu, “Modeling and process planning for curved layer fused deposition,” Int. J. Adv. Manuf. Technol., vol. 91, no. 1–4, pp. 273–285, 2017, doi: 10.1007/s00170-016-9743-5.
[4] R. J. A. Allen and R. S. Trask, “An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robot,” Addit. Manuf., vol. 8, pp. 78–87, 2015, doi: 10.1016/j.addma.2015.09.001.
[5] W. Gao, Y. Zhang, D. C. Nazzetta, K. Ramani, R. J. Cipra, and W. Lafayette, “RevoMaker : Enabling Multi-directional and Functionally-embedded 3D Printing using a Rotational Cuboidal Platform,” Proc. 28th Annu. ACM Symp. User Interface Softw. Technol. - UIST ’15, pp. 437–446, 2015, doi: 10.1145/2807442.2807476.
[6] X. Song, Y. Pan, and Y. Chen, “Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing,” J. Manuf. Sci. Eng., vol. 137, no. April, pp. 1–13, 2015, doi: 10.1115/1.4028897.
[7] D. Bourell, B. Stucker, Y. Chen, C. Zhou, and J. Lao, “A layerless additive manufacturing process based on CNC accumulation,” Rapid Prototyp. J., vol. 17, no. 3, pp. 218–227, 2011.
[8] Z.-F. Shao, X. Tang, X. Chen, and L.-P. Wang, “Research on the inertia matching of the Stewart parallel manipulator,” Robot. Comput. Integr. Manuf., vol. 28, no. 6, pp. 649–659, 2012, doi: 10.1016/j.rcim.2012.04.001.
[9] P. Ogbobe, Z. Ye, H. Jiang, and J. Han, “Analytical Formulation of Coupling Effects Matrix Between Degrees of Freedom Motion of Parallel Robots,” in Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on, 2010, vol. 1, pp. 711–714, doi: 10.1109/ICICTA.2010.368.
[10] K. Deb, Optimization for Engineering Design, 2nd ed. New Delhi: PHI Learning Private Limited, 2012.
[11] J. Ruan, K. Eiamsa-ard, and F. W. Liou, “Automatic process planning and toolpath generation of a multiaxis hybrid manufacturing system,” J. Manuf. Process., vol. 7, no. 1, pp. 57–68, 2005.
[12] K. Gupta, N. K. Jain, and R. F. Laubscher, Hybrid machining processes: perspectives on machining and finishing. Springer, 2016.
[13] A. El Khalick, M. N. Uchiyama, and S. Sano, “Sliding mode contouring control design using nonlinear sliding surface for three-dimensional machining,” Int. J. Mach. TOOLS Manuf., vol. 65, pp. 8–14, Feb. 2013, doi: 10.1016/j.ijmachtools.2012.07.004.
[14] S.-H. Chen and L.-C. Fu, “Observer-based backstepping control of a 6-dof parallel hydraulic manipulator,” Control Eng. Pract., vol. 36, pp. 100–112, Mar. 2015, doi: 10.1016/j.conengprac.2014.11.011.
[15] J. P. Merlet, Parallel robots, 2nd ed., vol. 128. Dordrecht: Springer Science & Business Media, 2006.
[16] Z. Pandilov and V. Dukovski, “Comparison of the Characteristics Between Serial and Parallel Robots,” Acta Tech. Corviniensis-Bulletin Eng., vol. 7, no. 1, pp. 2067–3809, 2014, [Online]. Available: https://acta.fih.upt.ro/pdf/2014-1/ACTA-2014-1-19.pdf.
[17] W. Lei, F. Qian, C. Jia, and S. Liye, “Control Method of Parallel Robot Based on Adaptive Neural Fuzzy Inference Combined with PID Control,” Agro Food Ind. Hi. Tech., vol. 28, no. 3, pp. 3169–3174, 2017.
[18] D. Zhang, Y. Xu, J. Yao, B. Hu, and Y. Zhao, “Kinematics, dynamics and stiffness analysis of a novel 3-DOFkinematically/actuation redundant planar parallel mechanism,” Mech. Mach. THEORY, vol. 116, pp. 203–219, Oct. 2017, doi: 10.1016/j.mechmachtheory.2017.04.011.
[19] M. Ming, A., Kajitani, “On the design of wire parallel mechanism,” Int. J. Jpn Soc. Precis. Eng, vol. 4, no. 29, pp. 337–242, 1995.
[21] G. Gogu, “Mobility of mechanisms: a critical review,” Mech. Mach. Theory, vol. 40, no. 9, pp. 1068–1097, Sep. 2005, doi: 10.1016/J.MECHMACHTHEORY.2004.12.014. [22] W. J. Liu, Xin-Jun, parallel Kinematics: Type, Kinematics, and Optimal Design, 1st ed. London: Springer London, 2014.
[23] J. P. Merlet, “Jacobian, manipulability, condition number and accuracy of parallel robots,” Springer Tracts Adv. Robot., vol. 28, 2007, doi: 10.1007/978-3-540-48113-3_16. [24] B. Dasgupta and P. Choudhury, “General strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators,” Mech. Mach. Theory, vol. 34, no. 6, pp. 801–824, 1999, doi: 10.1016/S0094-114X(98)00081-0.
[25] X. Wang and Y. Tian, “Inverse dynamics of hexa parallel robot based on the lagrangian equations of first type,” 2010 Int. Conf. Mech. Autom. Control Eng. MACE2010, no. 2008, pp. 3712–3716, 2010, doi: 10.1109/MACE.2010.5535969.
[26] A. A. Shabana, Computational Dynamics, 3rd ed. John Wiley & Sons, 2010.
[27] M. DANESHMAND, M. M. TALE, and M. H. SAADATZI, “Optimization of the Kinematic Sensitivity and the Greatest Continuous Circle in the Constant-orientation Workspace of Planar Parallel Mechanisms,” 2015.
[28] Y. Liu, H. Wu, Y. Yang, S. Zou, X. Zhang, and Y. Wang, “Symmetrical Workspace of 6-UPS Parallel Robot Using Tilt and Torsion Angles,” vol. 2018, 2018.
[29] X. J. Liu, J. Wang, K. K. Oh, and J. Kim, “A new approach to the design of a DELTA robot with a desired workspace,” J. Intell. Robot. Syst. Theory Appl., vol. 39, no. 2, pp. 209–225, 2004, doi: 10.1023/B:JINT.0000015403.67717.68.
[30] S. T. Filho and E. Cabral, “Kinematics and workspace analysis of a parallel architecture robot: the Hexa,” 18th Int. Congr. Mech. Eng. Novemb. 6-11, Ouro Preto, MG, vol. 2, no. August, pp. 158–165, 2005, [Online]. Available: http://www.abcm.org.br/pt/wp-content/anais/cobem/2005/PDF/COBEM2005-0095.pdf.
[31] J.-P. Merlet, “Jacobian, manipulability, condition number and accuracy of parallel robots.”
[32] J. D. Orozco-Muñiz, J. J. Cervantes-Sánchez, and J. M. Rico-Martínez, “Dexterity indices for planar parallel manipulators,” Robot. Comput. Integr. Manuf., vol. 46, pp. 144–155, Aug. 2017, doi: 10.1016/J.RCIM.2016.12.011.
[33] A. Koszewnik, K. Troc, and M. Słowik, “PID controllers design applied to positioning of ball on the stewart platform,” Acta Mech. Autom., vol. 8, no. 4, pp. 214–218, 2014, doi: 10.2478/ama-2014-0039.
[34] F. Inel and L. Khochmane, “Comparison performance between PID and PD controllers for three and four cable-based robots,” World J. Eng., vol. 11, no. 6, pp. 543–556, 2014, doi: 10.1260/1708-5284.11.6.543.
[35] S. Keshtkar, A. S. Poznyak, E. Hernandez, and A. Oropeza, “Adaptive Sliding-Mode Controller Based on the ``Super-Twist’’ State Observer for Control of the Stewart Platform,” Autom. Remote Control, vol. 78, no. 7, pp. 1218–1233, Jul. 2017, doi: 10.1134/S0005117917070049.
[36] H. Sira-Ramirez and S. K. Agrawal, Differentially Flat Systems, 2nd ed. Boca Raton: CRC Press, 2018.
[37] K. Ogata, Modern Control Engineering, 5th ed. New Jersey: Prentice Hall, 2010.
[38] J. Liu, “Basic sliding mode control principle and design,” in Sliding Mode Control Using MATLAB, Academic Press, 2017, pp. 1–29.
[39] V. I. Utkin, Sliding Modes in Control and Optimization, 2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.
[40] J. Slotine and W. Li, Applied Nonlinear Control. 1990.
[41] H. Lee and V. I. Utkin, “Chattering suppression methods in sliding mode control systems,” Annu. Rev. Control, vol. 31, no. 2, pp. 179–188, Jan. 2007, doi: 10.1016/J.ARCONTROL.2007.08.001.
[42] A. M. Piña, “Trajectory generation of differentially flat systems,” Rev. Técnologica Ingieneria Univ. Zulia, vol. 24, no. 2, pp. 99–106, 2001.
[43] A. Morillo, “Trajectory generation of differentially flat systems,” Rev. técnica la Fac. Ing. del Zulia., vol. 24, no. 2, pp. 99–106, 2001.
[44] S. Rao, Engineering Optimization. Theory and Practice, 4th ed. John Wiley & Sons, Ltd, 2009.
[45] K. Deb, Multi Objective Optimization using Evolutionary Algorithms, 1st ed. West Sussex: Wiley, 2001.
[46] V. D. Coello, Carlos, Lamont Gary, Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed. 2007.
[47] J. Price, K.; Storn, R.; Lampinen, Differential Evolution. Berlin: Springer, 2005.
[48] J. Lampinen and I. Zelinka, “Mixed Variable Non-linear Optimization by Difeerential Evolution,” Proccedings of Nostradamus, vol. 99, no. 2, pp. 1–10, 1999.
[49] M. Weck and D. Staimer, “Parallel kinematic machine tools - Current state and future potentials,” CIRP Ann. - Manuf. Technol., vol. 51, no. 2, pp. 671–683, 2002, doi: 10.1016/S0007-8506(07)61706-5.
[50] D. Stewart, “A Platform with Six Degrees of Freedom,” Proc. Inst. Mech. Eng., vol. 180, no. 1, pp. 371–386, Jun. 1965, doi: 10.1243/PIME_PROC_1965_180_029_02.
[51] Y. Jiang, T. Li, L. Wang, and F. Chen, “Improving tracking accuracy of a novel 3-DOF redundant planar parallel kinematic machine,” Mech. Mach. Theory, vol. 119, pp. 198–218, 2018, doi: 10.1016/j.mechmachtheory.2017.09.012.
[52] J. Fu, F. Gao, Y. Pan, and H. Du, “Forward kinematics solutions of a special six-degree-of-freedom parallel manipulator with three limbs,” Adv. Mech. Eng., vol. 7, no. 5, pp. 1–11, 2015, doi: 10.1177/1687814015582118.
[53] W. Ye, Y. Fang, and S. Guo, “Design and analysis of a reconfigurable parallel mechanism for multidirectional additive manufacturing,” Mech. Mach. Theory, vol. 112, pp. 307–326, Jun. 2017, doi: 10.1016/J.MECHMACHTHEORY.2016.02.011.
[54] A. Dutta, D. H. Salunkhe, S. Kumar, A. D. Udai, and S. V. Shah, “Sensorless full body active compliance in a 6 DOF parallel manipulator,” Robot. Comput. Integr. Manuf., vol. 59, no. May, pp. 278–290, 2019, doi: 10.1016/j.rcim.2019.04.010.
[55] K. H. Hunt, “Structural kinematics of in-parallel-actuated robot-arms,” J. Mech. Transm. Autom. Des., vol. 105, no. 4, pp. 705–712, 1983.
[56] C. Gosselin, T. Laliberte, and A. Veillette, “Singularity-Free Kinematically Redundant Planar Parallel Mechanisms With Unlimited Rotational Capability,” IEEE Trans. Robot., vol. 31, no. 2, pp. 457–467, Apr. 2015, doi: 10.1109/TRO.2015.2409433.
[57] L.-T. Schreiber and C. Gosselin, “Kinematically redundant planar parallel mechanisms: Kinematics, workspace and trajectory planning,” Mech. Mach. Theory, vol. 119, pp. 91–105, 2018, doi: 10.1016/j.mechmachtheory.2017.08.022.
[58] C. Chen, T. Gayral, S. Caro, D. Chablat, G. Moroz, and S. Abeywardena, “A Six Degree of Freedom Epicyclic-Parallel Manipulator,” J. Mech. Robot., vol. 4, no. 4, p. 041011, 2012, doi: 10.1115/1.4007489.
[59] W. Li and J. Angeles, “The design of a 3-CPS parallel robot for maximum dexterity,” Mech. Mach. Theory, vol. 122, pp. 279–291, 2018, doi: 10.1016/j.mechmachtheory.2018.01.003.
[60] H. Azulay, M. Mahmoodi, R. Zhao, J. K. Mills, and B. Benhabib, “Comparative analysis of a new 3× PPRS parallel kinematic mechanism,” Robot. Comput. Integr. Manuf., vol. 30, no. 4, pp. 369-378o, 2014, doi: 10.1016/j.rcim.2013.12.003.
[61] Y. Song, B. Lian, T. Sun, G. Dong, Y. Qi, and H. Gao, “A novel five-degree-of-freedom parallel manipulator and its kinematic optimization,” J. Mech. Robot., vol. 6, no. 4, 2014, doi: 10.1115/1.4027742.
[62] N. Seward and I. A. Bonev, “A new 6-DOF parallel robot with simple kinematic model,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 4061–4066, 2014, doi: 10.1109/ICRA.2014.6907449.
[63] C. Viegas, M. Tavakoli, and A. T. d. Almeida, “A novel grid-based reconfigurable spatial parallel mechanism with large workspace,” Mech. Mach. Theory, vol. 115, pp. 149–167, 2017, doi: 10.1016/j.mechmachtheory.2017.05.008.
[64] G. Yu, J. Wu, L. Wang, and Y. Gao, “Optimal Design of the Three-Degree-of-Freedom Parallel Manipulator in a Spray-Painting Equipment,” Robotica, vol. 38, no. 6, pp. 1064–1081, 2020.
[65] H. Zhang, H. Fang, Q. Zou, and D. Zhang, “Dynamic modeling and adaptive robust synchronous control of parallel robotic manipulator for industrial application,” Complexity, vol. 2020, 2020.
[66] A. Arian, M. Isaksson, and C. Gosselin, “Kinematic and dynamic analysis of a novel parallel kinematic Schönflies motion generator,” Mech. Mach. Theory, vol. 147, p. 103629, 2020.
[67] S. Lu, B. Ding, and Y. Li, “Minimum-jerk trajectory planning pertaining to a translational 3-degree-of-freedom parallel manipulator through piecewise quintic polynomials interpolation,” Adv. Mech. Eng., vol. 12, no. 3, p. 1687814020913667, 2020.
[68] X. Chai, M. Wang, L. Xu, and W. Ye, “Dynamic modeling and analysis of a 2PRU-UPR parallel robot based on screw theory,” Ieee Access, vol. 8, pp. 78868–78878, 2020.
[69] S. Xie, K. Hu, H. Liu, and Y. Wan, “Dynamic modeling and performance analysis of a new redundant parallel rehabilitation robot,” IEEE Access, vol. 8, pp. 222211–222225, 2020.
[70] H. Zhang, H. Fang, D. Zhang, Q. Zou, and X. Luo, “Trajectory tracking control study of a new parallel mechanism with redundant actuation,” Int. J. Aerosp. Eng., vol. 2020, 2020.
[71] Y. Rong, X. C. Zhang, and M. K. Qu, “Unified inverse dynamics for a novel class of metamorphic parallel mechanisms,” Appl. Math. Model., vol. 74, pp. 280–300, 2019, doi: 10.1016/j.apm.2019.04.051.
[72] S. Pedrammehr, B. Danaei, H. Abdi, M. T. Masouleh, and S. Nahavandi, “Dynamic analysis of Hexarot: Axis-symmetric parallel manipulator,” Robotica, vol. 36, no. 2, pp. 225–240, 2018, doi: 10.1017/S0263574717000315.
[73] W. E. Dharmalingum, J. Padayachee, and G. Bright, “SYNTHESIS OF A NOVEL FIVE-DEGREES–OF-FREEDOM PARALLEL KINEMATIC MANIPULATOR,” South African J. Ind. Eng., vol. 32, no. 1, pp. 131–143, May 2021, doi: 10.7166/32-1-2382.
[74] L. Sheng and W. Li, “Optimization design by genetic algorithm controller for trajectory control of a 3-RRR parallel robot,” Algorithms, vol. 11, no. 1, 2018, doi: 10.3390/a11010007.
[75] M. Russo, S. Herrero, O. Altuzarra, and M. Ceccarelli, “Kinematic analysis and multi-objective optimization of a 3-UPR parallel mechanism for a robotic leg,” Mech. Mach. Theory, vol. 120, pp. 192–202, Feb. 2018, doi: 10.1016/J.MECHMACHTHEORY.2017.10.004.
[76] A. G. Ruiz, J. C. Santos, J. Croes, W. Desmet, and M. M. Da Silva, “On redundancy resolution and energy consumption of kinematically redundant planar parallel manipulators,” Robotica, vol. 36, no. 6, pp. 809–821, Jun. 2018, doi: 10.1017/S026357471800005X.
[77] D. Chablat, X. Kong, and C. Zhang, “Kinematics, workspace, and singularity analysis of a parallel robot with five operation modes,” J. Mech. Robot., vol. 10, no. 3, Jun. 2018, doi: 10.1115/1.4039400/377469.
[78] H. Shen, Y. Tang, G. Wu, J. Li, T. Li, and T. Yang, “Design and analysis of a class of two-limb non-parasitic 2T1R parallel mechanism with decoupled motion and symbolic forward position solution - influence of optimal arrangement of limbs onto the kinematics, dynamics and stiffness,” Mech. Mach. Theory, vol. 172, p. 104815, Jun. 2022, doi: 10.1016/J.MECHMACHTHEORY.2022.104815.
[79] H. Shen, D. Chablat, B. Zeng, J. Li, G. Wu, and T. L. Yang, “A Translational Three-Degrees-of-Freedom Parallel Mechanism with Partial Motion Decoupling and Analytic Direct Kinematics,” J. Mech. Robot., vol. 12, no. 2, Jan. 2020, doi: 10.1115/1.4045972/1072539.
[80] M. Vallés et al., “Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator,” Mech. Based Des. Struct. Mach., vol. 46, no. 4, pp. 425–439, 2018, doi: 10.1080/15397734.2017.1355249.
[81] O. Altuzarra, D. Caballero, F. J. Campa, and C. Pinto, “Position analysis in planar parallel continuum mechanisms,” Mech. Mach. Theory, vol. 132, pp. 13–29, Feb. 2019, doi: 10.1016/J.MECHMACHTHEORY.2018.10.014.
[82] J. J. Gil, I. Zabalza, J. Ros, J. M. Pintor, and J. M. Jiménez, “Kinematics and dynamics of a 6-RUS hunt-type parallel manipulator by using natural coordinates,” in On Advances in Robot Kinematics, Springer, 2004, pp. 329–335.
[83] J. Aginaga, I. Zabalza, O. Altuzarra, and J. Nájera, “Improving static stiffness of the 6-RUS parallel manipulator using inverse singularities,” Robot. Comput. Integr. Manuf., vol. 28, no. 4, pp. 458–471, 2012, doi: 10.1016/j.rcim.2012.02.003.
[84] J. Hesselbach, C. Bier, A. Campos, and H. Lowe, “Direct kinematic singularity detection of a hexa parallel robot,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, 2005, pp. 3238–3243.
[85] M. Dehghani, M. Ahmadi, A. Khayatian, M. Eghtesad, and M. Yazdi, “Vision-based calibration of a Hexa parallel robot,” Ind. Robot An Int. J., vol. 41, no. 3, pp. 296–310, 2014.
[86] D. Chen, S. Li, J. F. Wang, Y. Feng, and Y. Liu, “A multi-objective trajectory planning method based on the improved immune clonal selection algorithm,” Robot. Comput. Integr. Manuf., vol. 59, pp. 431–442, Oct. 2019, doi: 10.1016/J.RCIM.2019.04.016.
[87] S. Li, D. Chen, and J. Wang, “An optimal singularity-free motion planning method for a 6-DOF parallel manipulator,” Ind. Rob., vol. 48, no. 2, pp. 290–299, 2020, doi: 10.1108/IR-04-2020-0079/FULL/XML.
[88] A. Antonov and V. Glazunov, “Position, velocity, and workspace analysis of a novel 6-DOF parallel manipulator with ‘piercing’ rods,” Mech. Mach. Theory, vol. 161, p. 104300, Jul. 2021, doi: 10.1016/J.MECHMACHTHEORY.2021.104300.
[89] M. F. Shah, Z. Kausar, M. U. Farooq, L. A. Khan, and S. S. Farooq, “Accuracy Analysis of Machining Trajectory Contemplating Workpiece Dislocation on a Six Degree of Freedom Machining Bed:,” https://doi-org.bd.univalle.edu.co/10.1177/0954406220974049, vol. 235, no. 19, pp. 4037–4048, Dec. 2020, doi: 10.1177/0954406220974049.
[90] A. Fomin, A. Antonov, V. Glazunov, and Y. Rodionov, “Inverse and Forward Kinematic Analysis of a 6-DOF Parallel Manipulator Utilizing a Circular Guide,” Robot. 2021, Vol. 10, Page 31, vol. 10, no. 1, p. 31, Feb. 2021, doi: 10.3390/ROBOTICS10010031.
[91] K. Wang, X. Wu, Y. Wang, J. Ding, and S. Bai, “Kinematics of a 6-DOF parallel manipulator with two limbs actuated by spherical motion generators:,” https://doi-org.bd.univalle.edu.co/10.1177/09544062211032998, Dec. 2021, doi: 10.1177/09544062211032998.
[92] Y. Liwei, F. Yanchao, C. Fangmao, P. Xinyuan, and D. deyi, “Parameter calibration of 6-degree-of-freedom parallel mechanism based on orthogonal displacement measuring system,” Optik (Stuttg)., vol. 226, p. 165806, Jan. 2021, doi: 10.1016/J.IJLEO.2020.165806.
[93] M. J. Thomas, M. M. Sanjeev, A. P. Sudheer, and J. M.L, “Comparative study of various machine learning algorithms and Denavit–Hartenberg approach for the inverse kinematic solutions in a 3-PPSS parallel manipulator,” Ind. Rob., vol. 47, no. 5, pp. 683–695, Aug. 2020, doi: 10.1108/IR-11-2019-0233/FULL/XML.
[94] R. V. Anirudh, K. A. Sai, S. Kulothungan, and A. K. Dash, “An Application of a 3-RRRS 6 DOF Parallel Manipulator,” J. Title, vol. 10, no. 1, pp. 501–509, 2020, doi: 10.5875/AUSMT.V10I1.2048.
[95] X. Liang and Y. Takeda, “An iterative method for the inverse kinematics of lower-mobility parallel mechanism with three RS or SR chains based on kinematically equivalent mechanism,” Mech. Mach. Theory, vol. 141, pp. 40–51, Nov. 2019, doi: 10.1016/J.MECHMACHTHEORY.2019.06.033.
[96] H. S. A. Q. E. Han, C. Y. Han, Z. B. Xu, M. C. Zhu, Y. Yu, and Q. W. Wu, “Kinematics analysis and testing of novel 6-P-RR-R-RR parallel platform with offset RR-joints:,” https://doi-org.bd.univalle.edu.co/10.1177/0954406218817001, vol. 233, no. 10, pp. 3512–3530, Dec. 2018, doi: 10.1177/0954406218817001.
[97] Z. M. Bi and B. Kang, “An Inverse Dynamic Model of Over-Constrained Parallel Kinematic Machine Based on Newton–Euler Formulation,” J. Dyn. Syst. Meas. Control, vol. 136, no. 4, p. 041001, Mar. 2014, doi: 10.1115/1.4026533.
[98] A. Arian, B. Danaei, and M. Tale Masouleh, “Kinematic and Dynamic Analysis of Tripteron, an Over-constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach,” AUT J. Model. Simul., vol. 50, no. 1, pp. 61–70, Jun. 2018, doi: 10.22060/MISCJ.2018.13020.5055.
[99] B. Zhang, S. Jiang, Z. Jiang, J. Li, K. Zhou, and F. Liu, “Dynamic Analysis and Control Research of a 3-DOF Hydraulic Driven Parallel Mechanism,” Recent Patents Mech. Eng., vol. 13, no. 2, pp. 156–170, 2020, doi: 10.2174/2212797613666200210113800.
[100] J. Li et al., “Mechanical design and performance analysis of a novel parallel robot for ankle rehabilitation,” J. Mech. Robot., vol. 12, no. 5, p. 51007, 2020, doi: 10.1115/1.4046511.
[101] Z. Wang, N. Zhang, X. Chai, and Q. Li, “Kinematic/dynamic analysis and optimization of a 2-URR-RRU parallel manipulator,” NONLINEAR Dyn., vol. 88, no. 1, pp. 503–519, 2017, doi: 10.1007/s11071-016-3256-5.
[102] Y. Zhao, H. Yu, J. Zhang, J. Yang, and T. Zhao, “Kinematics, dynamics and control of a stabilized platform with a 6-RUS parallel mechanism,” Int. J. Robot. Autom., vol. 32, no. 3, pp. 283–290, 2017.
[103] A. Arian, B. Danaei, and M. T. Masouleh, “Kinematics and dynamics analysis of a 2-dof spherical parallel robot,” in 2016 4th international conference on robotics and mechatronics (ICROM), 2016, pp. 154–159, doi: 10.1109/ICRoM.2016.7886838.
[104] C. Xiulong, L. Yuewen, and J. Yonghao, “Dynamic response and nonlinear characteristics of spatial parallel mechanism with spherical clearance joint,” J. Comput. Nonlinear Dyn., vol. 14, no. 4, 2019, doi: 10.1115/1.4042636.
[105] J. Brinker, B. Corves, and M. Wahle, “A comparative study of inverse dynamics based on Clavel’s delta robot,” 2015 IFToMM World Congr. Proceedings, IFToMM 2015, 2015, doi: 10.6567/IFToMM.14TH.WC.OS13.026.
[106] M. J. Thomas, M. L. Joy, and A. P. Sudheer, “Kinematic and Dynamic Analysis of a 3-PRUS Spatial Parallel Manipulator,” Chinese J. Mech. Eng. (English Ed., vol. 33, no. 1, pp. 1–17, Dec. 2020, doi: 10.1186/S10033-020-0433-8/FIGURES/18.
[107] Y.-L. Kuo and S.-C. Tang, “Dynamics and control of a 3-dof planar parallel manipulator using visual servoing resolved acceleration control,” J. Low Freq. Noise, Vib. Act. Control, vol. 40, no. 1, pp. 458–480, 2021, doi: 10.1177/1461348419876154.
[108] V. Muralidharan, T. K. Mamidi, S. Guptasarma, A. Nag, and S. Bandyopadhyay, “A comparative study of the configuration-space and actuator-space formulations of the Lagrangian dynamics of parallel manipulators and the effects of kinematic singularities on these,” Mech. Mach. Theory, vol. 130, pp. 403–434, 2018, doi: 10.1016/j.mechmachtheory.2018.07.009.
[109] J. Bernal, R. Campa, and I. Soto, “Kinematics and dynamics modeling of the 6-3- PUS-type Hexapod parallel mechanism,” J. Mech. Sci. Technol., vol. 32, no. 10, pp. 4555–4570, Oct. 2018, doi: 10.1007/s12206-018-0901-6.
[110] C. Zhu, J. Katupitiya, and J. Wang, “Effect of links deformation on motion precision of parallel manipulatorbased on flexible dynamics,” Ind. Robot. Int. J., vol. 44, no. 6, pp. 776–787, 2017, doi: 10.1108/IR-12-2016-0368.
[111] Z. Geng, L. S. Haynes, J. D. Lee, and R. L. Carroll, “On the dynamic model and kinematic analysis of a class of Stewart platforms,” Rob. Auton. Syst., vol. 9, no. 4, pp. 237–254, Jan. 1992, doi: 10.1016/0921-8890(92)90041-V.
[112] Lung-Wen Tsai, G. C. Walsh, and R. E. Stamper, “Kinematics of a novel three DOF translational platform,” in Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 3446–3451, doi: 10.1109/ROBOT.1996.509237.
[113] B. Danaei, A. Arian, M. T. Masouleh, and A. Kalhor, “Kinematic and Dynamic Modeling and Base Inertial Parameters Determination of the Quadrupteron Parallel Manipulator,” 2018, pp. 249–256.
[114] R. Li, S. Wang, D. Fan, Y. Du, and S. Bai, “Dynamic modeling of a 2-RPU+2-UPS hybrid manipulator for machining application,” Model. Identif. Control, vol. 38, no. 4, pp. 169–184, 2017, doi: 10.4173/mic.2017.4.2.
[115] J. Gallardo-Alvarado, R. Rodríguez-Castro, and P. J. Delossantos-Lara, “Kinematics and dynamics of a 4-PRUR Schönflies parallel manipulator by means of screw theory and the principle of virtual work,” Mech. Mach. Theory, vol. 122, pp. 347–360, 2018, doi: 10.1016/j.mechmachtheory.2017.12.022.
[116] H. Yang, H. Fang, Y. Fang, and H. Qu, “Kinematics performance and dynamics analysis of a novel parallel perfusion manipulator with passive link,” Math. Probl. Eng., vol. 2018, 2018, doi: 10.1155/2018/6768947.
[117] D. Li et al., “Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle,” Nucl. Eng. Technol., vol. 52, no. 11, pp. 2630–2637, 2020, doi: 10.1016/j.net.2020.04.017.
[118] R. Li, S. Wang, D. Fan, Y. Du, and S. Bai, “Dynamic Modeling of a 2-RPU+2-UPS Hybrid Manipulator for Machining Application,” Model. Identif. Control A Nor. Res. Bull., vol. 38, no. 4, pp. 169–184, 2017, doi: 10.4173/mic.2017.4.2.
[119] G. Han, F. Xie, and X.-J. Liu, “Evaluation of the power consumption of a high-speed parallel robot,” Front. Mech. Eng., vol. 13, no. 2, pp. 167–178, 2018, doi: 10.1007/s11465-017-0456-8.
[120] A. Arian, M. Isaksson, and C. Gosselin, “Kinematic and dynamic analysis of a novel parallel kinematic Schönflies motion generator,” Mech. Mach. Theory, vol. 147, p. 103629, May 2020, doi: 10.1016/J.MECHMACHTHEORY.2019.103629.
[121] P. Li, A. Ghasemi, W. Xie, and W. Tian, “Visual Closed-Loop Dynamic Model Identification of Parallel Robots Based on Optical CMM Sensor,” Electron. 2019, Vol. 8, Page 836, vol. 8, no. 8, p. 836, Jul. 2019, doi: 10.3390/ELECTRONICS8080836.
[122] X. Song, Y. Zhao, L. Jin, P. Zhang, and C. Chen, “Dynamic feedforward control in decoupling space for a four-degree-of-freedom parallel robot:,” https://doi.org/10.1177/1729881418820451, vol. 16, no. 1, Jan. 2019, doi: 10.1177/1729881418820451.
[123] A. Arian, B. Danaei, H. Abdi, and S. Nahavandi, “Kinematic and dynamic analysis of the Gantry-Tau, a 3-DoF translational parallel manipulator,” Appl. Math. Model., vol. 51, pp. 217–231, 2017, doi: 10.1016/j.apm.2017.06.012.
[124] S. S. Parsa, R. Boudreau, and J. A. Carretero, “Reconfigurable mass parameters to cross direct kinematic singularities in parallel manipulators,” Mech. Mach. Theory, vol. 85, pp. 53–63, Mar. 2015, doi: 10.1016/J.MECHMACHTHEORY.2014.10.008.
[125] J.-H. Choi, T. Seo, and J. W. Lee, “Singularity analysis of a planar parallel mechanism with revolute joints based on a geometric approach,” Int. J. Precis. Eng. Manuf., vol. 14, no. 8, pp. 1369–1375, Aug. 2013, doi: 10.1007/s12541-013-0185-9.
[126] C. Gosselin and J. Angeles, “Singularity analysis of closed-loop kinematic chains,” IEEE Trans. Robot. Autom., vol. 6, no. 3, pp. 281–290, Jun. 1990, doi: 10.1109/70.56660.
[127] C. Gosselin, “Determination of the workspace of 6-DOF parallel manipulators,” J. Mech. Des., vol. 112, no. 3, pp. 331–336, 1990, doi: 10.1115/1.2912612.
[128] I. A. Bonev and J. Ryu, “A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators,” Mech. Mach. theory, vol. 36, no. 1, pp. 1–13, 2001, doi: 10.1016/S0094-114X(00)00031-8.
[129] H. An, B. Li, S. Wang, and W. Ge, “Kinematics and Transmission Performance Analyses of a 2T2R Type 4-DOF Spatial Parallel Manipulator,” J. Robot., vol. 2018, 2018, doi: 10.1155/2018/4750627.
[130] E. Mirshekari, A. Ghanbarzadeh, and K. H. Shirazi, “Structure comparison and optimal design of 6-rus parallel manipulator based on kinematic and dynamic performances,” Lat. Am. J. Solids Struct., vol. 13, no. 13, pp. 2414–2438, 2016, doi: 10.1590/1679-78252937.
[131] F. La Mura, P. Romanó, E. Fiore, and H. Giberti, “Workspace limiting strategy for 6 DOF force controlled PKMs manipulating high inertia objects,” Robotics, vol. 7, no. 1, 2018, doi: 10.3390/robotics7010010.
[132] E. Mirshekari, A. Ghanbarzadeh, K. H. Shirazia, E. Mirshekari, A. Ghanbarzadeh, and K. H. Shirazia, “Structure comparison and optimal design of 6-RUS parallel manipulator based on kinematic and dynamic performances,” Lat. Am. J. Solids Struct., vol. 13, no. 13, pp. 2414–2438, Dec. 2016, doi: 10.1590/1679-78252937.
[133] M. J.P., “Interval analysis and reliability in robotics,” Int. J. Reliab. Saf., vol. 3, no. 1–3, pp. 104–130, 2009.
[134] E. Fiore, H. Giberti, and L. Sbaglia, “Dimensional synthesis of a 5-DOF parallel kinematic manipulator for a 3d printer,” 16th Int. Conf. Res. Educ. Mechatronics, REM 2015 - Proc., pp. 41–52, 2016, doi: 10.1109/REM.2015.7380372.
[135] S. Abeywardena and C. Chen, “Implementation and evaluation of a three-legged six-degrees-of-freedom parallel mechanism as an impedance-type haptic device,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 3, pp. 1412–1422, 2017, doi: 10.1109/TMECH.2017.2682930.
[136] P. Grosch, R. Di Gregorio, J. Lopez, and F. Thomas, “Motion Planning for a Novel Reconfigurable Parallel Manipulatorwith Lockable Revolute Joints,” IEEE Int. Conf. Robot. Autom., pp. 4697–4702, 2010, doi: 10.1109/ROBOT.2010.5509305.
[137] K. Miller, “Optimal design and modeling of spatial parallel manipulators,” Int. J. Rob. Res., vol. 23, no. 2, pp. 127–140, 2004, doi: 10.1177/0278364904041322. [138] S. Pedrammehr, M. R. C. Qazani, H. Asadi, M. M. Ettefagh, and S. Nahavandi, “Model-based control of axisymmetric hexarot parallel manipulators,” Results Control Optim., vol. 7, Feb. 2023, doi: 10.1016/J.RICO.2022.100135.
[139] A. Valencia, M. Mauledoux, and C. Castañeda, “Design of Dynamic Controllers for Continuous Paths on Parallel Platforms (Slide Modes and PD+),” MATEC Web Conf., vol. 306, no. 20 20, p. 03005, 2020, doi: 10.1051/matecconf/202030603005.
[140] V. Prada-Jimenez, P. A. Nino-Suarez, E. A. Portilla-Flores, and M. F. Mauledoux-Monroy, “Tuning a PD+ controller by means of dynamic optimization in a mobile manipulator with coupled dynamics,” IEEE Access, vol. 7, pp. 124712–124726, 2019, doi: 10.1109/ACCESS.2019.2936309.
[141] D. . Nunez, M. Mauledoux, O. Aviles, J. Guacheta, and S. Gonzalez, “Optimal Design of Kinematics Parallel Manipulator Considering Workspace and Control,” Int. J. Mech. Eng. Robot. Res., vol. 11, no. 4, 2022.
[142] H. Q. Zhang, H. R. Fang, B. S. Jiang, and S. G. Wang, “Dynamic Performance Evaluation of a Redundantly Actuated and Over-constrained Parallel Manipulator,” Int. J. Autom. Comput. 2018 163, vol. 16, no. 3, pp. 274–285, Oct. 2018, doi: 10.1007/S11633-018-1147-6.
[143] J. Wu, Y. Gao, B. Zhang, and L. Wang, “Workspace and dynamic performance evaluation of the parallel manipulators in a spray-painting equipment,” Robot. Comput. Integr. Manuf., vol. 44, pp. 199–207, 2017, doi: 10.1016/j.rcim.2016.09.002.
[144] Y. Zhao, Z. Zhang, and G. Cheng, “Inverse rigid-body dynamic analysis for a 3UPS-PRU parallel robot,” Adv. Mech. Eng., vol. 9, no. 2, Feb. 2017, doi: 10.1177/1687814017693194.
[145] C. Li, N. Wang, K. Chen, and X. Zhang, “Prescribed flexible orientation workspace and performance comparison of non-redundant 3-DOF planar parallel mechanisms,” Mech. Mach. Theory, vol. 168, p. 104602, 2022, doi: 10.1016/j.mechmachtheory.2021.104602.
[146] G. Yu, J. Wu, L. Wang, and Y. Gao, “Optimal Design of the Three-Degree-of-Freedom Parallel Manipulator in a Spray-Painting Equipment,” Robotica, vol. 38, no. 6, pp. 1064–1081, Jun. 2020, doi: 10.1017/S0263574719001255.
[147] G. Huang, S. Guo, D. Zhang, H. Qu, and H. Tang, “Kinematic analysis and multi-objective optimization of a new reconfigurable parallel mechanism with high stiffness,” Robotica, vol. 36, no. 2, pp. 187–203, 2018, doi: 10.1017/S0263574717000236.
[148] C. Li, H. Wu, and H. Eskelinen, “Design and Multi-Objective Optimization of a Dexterous Mobile Parallel Mechanism for Fusion Reactor Vacuum Vessel Assembly,” IEEE Access, vol. 9, pp. 153796–153810, 2021, doi: 10.1109/ACCESS.2021.3127947.
[149] B. Shi and H. Wu, “Designation and Multiobjective Optimization of a New Six-DOF Haptic Device Based on Genetic Algorithm,” Wirel. Commun. Mob. Comput., vol. 2021, 2021, doi: 10.1155/2021/5551585.
[150] Q. Zou, D. Zhang, X. Luo, G. Huang, L. Li, and H. Zhang, “Enumeration and optimum design of a class of translational parallel mechanisms with prismatic and parallelogram joints,” Mech. Mach. Theory, vol. 150, p. 103846, Aug. 2020, doi: 10.1016/J.MECHMACHTHEORY.2020.103846.
[151] T. Sun and B. Lian, “Stiffness and mass optimization of parallel kinematic machine,” Mech. Mach. Theory, vol. 120, pp. 73–88, 2018, doi: 10.1016/j.mechmachtheory.2017.09.014.
[152] J. Enferadi and R. Nikrooz, “The Performance Indices Optimization of a Symmetrical Fully Spherical Parallel Mechanism for Dimensional Synthesis,” J. Intell. Robot. Syst. Theory Appl., vol. 90, no. 3–4, pp. 305–321, 2018, doi: 10.1007/s10846-017-0675-6.
[153] T. L. Saaty, “Decision making with the analytic hierarchy process,” Int. J. Serv. Sci., vol. 1, no. 1, p. 83, 2008, doi: 10.1504/IJSSCI.2008.017590.
[154] G. Improta, M. A. Russo, M. Triassi, G. Converso, T. Murino, and L. C. Santillo, “Use of the AHP methodology in system dynamics: Modelling and simulation for health technology assessments to determine the correct prosthesis choice for hernia diseases,” Math. Biosci., vol. 299, no. June 2017, pp. 19–27, 2018, doi: 10.1016/j.mbs.2018.03.004.
[155] A. V. Nguyen, B. C. Bouzgarrou, K. Charlet, and A. Béakou, “Static and dynamic characterization of the 6-Dofs parallel robot 3CRS,” Mech. Mach. theory, vol. 93, pp. 65–82, 2015.
[156] F. Pierrot, “A new design of a 6-DOF parallel robot,” J. Robot. Mechatronics, vol. 2, no. 4, pp. 308–315, 1990.
[157] A. Şumnu, İ. H. Güzelbey, M. V Çakir, A. Sumnu, I. H. Guzelbey, and M. V. Cakir, “Simulation and PID control of a Stewart platform with linear motor,” J. Mech. Sci. Technol., vol. 31, no. 1, pp. 345–356, 2017, doi: 10.1007/s12206-016-1238-7.
[158] R. G. Budynas, R. G. Budynas, and J. K. Nisbett, Shigley’s Mechanical Engineering Design. McGraw-Hill Education, 2014.
[159] A. J. Valencia, M. Mauledoux, and D. A. Nunez, “Inverse and Direct Kinematics of Hexa Parallel Robot of Six Degrees of Freedom,” Int. J. Mech. Eng. Robot. Res., vol. 8, no. 5, 2019, doi: 10.18178/ijmerr.8.5.748-752.
[160] Y. Zhao and F. Gao, “Inverse dynamics of the 6-dof out-parallel manipulator by means of the principle of virtual work,” Robotica, vol. 27, no. 2, pp. 259–268, Mar. 2009, doi: 10.1017/S0263574708004657.
[161] J. Wu, X. Chen, and L. Wang, “Design and Dynamics of a Novel Solar Tracker with Parallel Mechanism,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 1, pp. 88–97, Feb. 2016, doi: 10.1109/TMECH.2015.2446994.
[162] J. J. Craig, Introduction to robotics: mechanics and control, vol. 3. Pearson/Prentice Hall Upper Saddle River, NJ, USA:, 2005.
[163] R. Silva-Ortigoza, H. Sira-Ramírez, and V. M. Hernández-Guzmán, “Control of the DC/DC boost converter using sliding modes and differential flatness: Experimental results,” RIAI - Rev. Iberoam. Autom. e Inform. Ind., vol. 5, no. 4, pp. 77–82, 2008, doi: 10.1016/s1697-7912(08)70180-8.
[164] R. Kumar, S. C. Kaushik, R. Kumar, and R. Hans, “Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making,” Ain Shams Eng. J., vol. 7, no. 2, pp. 741–753, 2016, doi: 10.1016/j.asej.2015.06.007.
[165] C. Coello, G. Lamont, and D. Van Veldhuizen, “Emoobook,” Appendix, 2007. http://www.cs.cinvestav.mx/~emoobook/ (accessed Mar. 29, 2022).
[166] G. G. Yen and Z. He, “Performance metric ensemble for multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 18, no. 1, pp. 131–144, Feb. 2014, doi: 10.1109/TEVC.2013.2240687.
[167] G.-A. Vargas-Hákim, E. Mezura-Montes, and E. Galván, “Evolutionary Multi-Objective Energy Production Optimization: An Empirical Comparison,” Math. Comput. Appl., vol. 25, no. 2, p. 32, 2020, doi: 10.3390/mca25020032.
[168] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, 2009, doi: 10.1109/TEVC.2008.927706.
[169] D. Nunez, M. Mauricio, and A. Oscar, “Optimal Design of the HEXA RUS Mechanism,” 2022.
dc.rights.spa.fl_str_mv Open Access
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Open Access
http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv pdf
dc.coverage.spatial.spa.fl_str_mv Campus UMNG
dc.publisher.spa.fl_str_mv Universidad Militar Nueva Granada
dc.publisher.program.spa.fl_str_mv Doctorado en Ciencias Aplicadas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv http://repository.unimilitar.edu.co/bitstream/10654/45172/1/Nu%c3%b1ezVallejosDiegoAlejandro2023.pdf
http://repository.unimilitar.edu.co/bitstream/10654/45172/2/license.txt
bitstream.checksum.fl_str_mv 30793601a0cf39bac6f3c66cf3a84688
a609d7e369577f685ce98c66b903b91b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1808417802895228928
spelling Mauledoux, MauricioNuñez Vallejos, Diego AlejandroDoctor en Ciencias AplicadasAvilés, OscarCampus UMNG2023-11-14T14:33:16Z2023-11-14T14:33:16Z2023http://hdl.handle.net/10654/45172instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.unimilitar.edu.coLa manufactura aditiva es una técnica cuyo principio técnico es la adición de capas de material para fabricar piezas. Aunque se han hecho estudios en pro de su mejora en aspectos de deposición, control de temperatura, flujos y movimientos, estos últimas aún presentan retos a superar. Las máquinas convencionales tienen movimientos cartesianos que genera dificultades relacionados con el acabado, con los requerimientos isotrópicos, con la unión de capas, con el uso de material de soporte, con las bajas velocidades de impresión y con la imposibilidad de imprimir alrededor de obstáculos. Con el fin de mejorar estos aspectos, algunos desarrollos han usado mecanismos paralelos como base de movimiento; sin embargo, las técnicas convencionales de diseño estos mecanismos se han concentrado en dividir esta etapa en fases. Usualmente, se concentran los primeros esfuerzos en los requerimientos estructurales y geométricos, para luego pasar a la fase de control. El resultado de esto son mecanismos sobredimensionados con altos requerimientos energéticos y costos elevados. Por tal motivo es necesario desarrollar un mecanismo paralelo que incremente la multidireccionalidad del sistema y optimice los requerimientos volumétricos, con movimientos suaves, demanda energética pequeña y buena precisión de movimientos. Por tal motivo, se planteó una estrategia de diseño considerando aspectos como:el análisis cinemático y dinámico del mecanismo; un espacio de trabajo computacionalmente eficiente debido a sus características discretas y técnicas de búsqueda;un nuevo índice de manipulabilidad; una estrategia de control robusta donde se examinen sus errores y esfuerzos de control; indicadores de desempeño energético y de eficiencia de control y el planteamiento de funciones objetivo que junto con sus restricciones fueron evaluadas paralelamente en algoritmos metaheurísticos de optimización. Esta estrategia de diseño no solo logró obtener un mecanismo paralelo con seis grados de libertad, llamado HEXA, para su implementación en manufactura aditiva, sino que, presentó nuevas formas de análisis y control de mecanismos de cinemática paralela que involucran análisis y desarrollos geométrico, de movimiento y de control. Finalmente, la metodología empleada puede ser la base para el análisis, diseño y optimización otros mecanismos paralelos y hace que ésta forma de diseño tenga el potencial de crear nuevas investigaciones, profesiones, industrias y empleos; impactando la academia y la industria.1 INTRODUCCIÓN 1 1.1 Descripción general 1 1.2 Objetivos 2 1.2.1 Objetivo general 2 1.2.2 Objetivos específicos 3 1.3 Metodología 3 1.4 Alcance del trabajo 4 1.5 Contribuciones 5 1.6 Organización de la tesis 6 2 MARCO TEÓRICO 7 2.1 Mecanismo paralelo 7 2.2 Cinemática inversa 9 2.3 Cinemática diferencial 10 2.3.1 Generalidades 10 2.3.2 Matriz Jacobiana 10 2.4 Formulaciones para la obtención de la dinámica del mecanismo 11 2.4.1 Formulación de Newton Euler 11 2.4.2 Formulación de Euler Laplace 11 2.4.3 Principio del trabajo virtual 12 2.5 Espacio de trabajo 12 2.5.1 Enfoque geométrico 13 2.5.2 Máximo volumen inscrito con CAD 13 2.5.3 Método discreto 14 2.5.4 Análisis de límites por restricciones 14 2.6 Manipulabilidad 14 2.7 Estrategia de control 15 2.7.1 Modos deslizantes 15 2.7.2 Planitud diferencial 21 2.8 Error y esfuerzo de control 23 2.9 Optimización 24 2.9.1 Métodos de optimización clásicos 24 2.9.2 Métodos de optimización no tradicionales 25 2.9.3 Planteamiento de un problema de optimización 25 2.9.4 Concepto de dominancia 26 2.9.5 Frente de Pareto 26 2.9.6 Métodos implementados 27 3 ESTADO DEL ARTE 29 3.1 Configuraciones mecánicas de los MPs 29 3.2 Investigaciones en cinemática y dinámica 38 3.2.1 Avances en estudio de cinemática inversa 38 3.2.2 Progresos en modelación de la dinámica 39 3.3 Tendencias en espacio de trabajo 41 3.4 Estrategias de control en MPs 44 3.5 Avances en la optimización de MPs 45 3.6 Conclusión del análisis del estado del arte 46 4 DESCRIPCIÓN DEL MECANISMO 47 4.1 Selección del mecanismo 47 4.1.1 Mecanismos analizados 47 4.1.2 Metodología de selección 47 4.1.3 Definición de criterios 49 4.2 Especificaciones del mecanismo 51 4.3 Determinación de la cinemática inversa 55 4.3.1 Vértices de las plataformas 55 4.3.2 Modelo matemático para la cinemática inversa 56 4.4 Desarrollo de la modelación dinámica 60 4.4.1 Análisis de velocidad 60 4.4.2 Análisis de aceleración 61 4.4.3 Matriz Jacobiana de velocidades 62 4.4.4 Matriz Jacobiana de aceleraciones 63 4.4.5 Matrices Jacobianas de los eslabones 63 4.4.6 Modelo dinámico por el principio de trabajo virtual 64 5 DETERMINACIÓN DE LAS FUNCIONES OBJETIVO 70 5.1 Cálculo del espacio de trabajo 70 5.1.1 Evaluación de posición 70 5.1.2 Generación de nube de puntos 72 5.1.3 Cálculo del volumen 74 5.2 Identificación de la manipulabilidad 75 5.3 Implementación de la estrategia de control 76 5.3.1 Control equivalente por planitud diferencial 77 5.3.2 Control atractivo 78 5.4 Esfuerzo de control 81 5.5 Error de control 81 6 OPTIMIZACIÓN DEL SISTEMA 84 6.1 Variables de diseño 84 6.2 Funciones objetivo 84 6.2.1 Funciones objetivo geométricas 84 6.2.2 Funciones objetivo de control 85 6.3 Restricciones 87 6.4 Problema de optimización 88 6.5 Análisis de dominancia 89 6.6 Clasificación de hacinamiento 89 6.7 Evaluación del algoritmo 90 6.8 Método de toma de decisión y espaciado 91 6.9 . Implementación 92 7 RESULTADOS Y DISCUSIÓN 96 7.1 Producto del análisis de cinemática inversa 96 7.2 Solución del WS 99 7.3 Análisis de manipulabilidad 102 7.4 Efecto de la implementación de la estrategia de control 103 7.5 Indicador del esfuerzo de control 112 7.6 Ejecución de la optimización 113 7.7 Prototipo del HEXA 6 RUS 120 8 CONCLUSIONES 123 REFERENCIAS 125 ANEXOS 136 Anexo A 137 Anexo B 138 Anexo C 140 Anexo D 232 Anexo E 236 Anexo F 238 Anexo G 246 Anexo H 253Additive manufacturing is a technique whose fundamental principle involves adding layers of material to create parts. While numerous studies have been conducted to enhance material deposition, temperature control, material flow, and motion, the latter still pose significant challenges. Traditional machines with Cartesian directions often lead to difficulties associated with finishing, meeting isotropic requirements, achieving proper layer bonding, utilizing support materials, slow printing speeds, and the inability to print around obstacles. To address these issues, some advancements have turned to parallel manipulators as the foundation for motion mechanisms. However, conventional approaches to designing these manipulators have typically divided the process into stages. Typically, initial efforts focus on structural and geometric requirements, followed by the control phase. This frequently results in oversized mechanisms with high energy consumption and substantial costs. Consequently, it becomes imperative to develop a parallel mechanism tailored for additive manufacturing that enhances system multi-directionality while optimizing volumetric requirements with smooth motions, minimal energy consumption, and precise movement. In pursuit of these goals, a design strategy was proposed, considering aspects such as kinematic and dynamic analysis of the mechanism, computationally efficient working volumes due to their discrete characteristics, and search techniques. It also introduced a new manipulability index, a robust control strategy that accommodates control errors and efforts, energy performance and control efficiency metrics, and objective functions. These elements, in conjunction with their constraints, were concurrently evaluated using metaheuristic optimization algorithms. This design strategy not only successfully produced a six-degrees-of-freedom parallel manipulator named HEXA, tailored for additive manufacturing, which fulfills the aforementioned requirements, but it also introduced innovative methods for analyzing and controlling parallel kinematic mechanisms, encompassing geometric, kinematic, and control analyses. Finally, this methodology can serve as a foundation for the analysis, design, and optimization of other parallel mechanisms and holds the potential to spark new research, professions, industries, and job opportunities, thereby making a substantial impact on both academia and industry.DoctoradopdfspaUniversidad Militar Nueva GranadaDoctorado en Ciencias AplicadasFacultad de Ciencias BásicasUniversidad Militar Nueva GranadaOpen Accesshttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 InternacionalAcceso abiertohttp://purl.org/coar/access_right/c_abf2Diseño óptimo de un mecanismo paralelo enfocado en manufactura aditivaOptimal design of a parallel mechanism focused on additive manufacturingINDUSTRIAS MANUFACTURERASMANUFACTURASParallel mechanismOptimizationAdditive manufacturingTridimensional printingMecanismo paraleloOptimizaciónmanufactura aditivaimpresión tridimensionalDoctoralinfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06[1] M. Baumers, P. Dickens, C. Tuck, and R. Hague, “The cost of additive manufacturing: Machine productivity, economies of scale and technology-push,” Technol. Forecast. Soc. Change, vol. 102, 2016, doi: 10.1016/j.techfore.2015.02.015.[2] W. Gao et al., “The status, challenges, and future of additive manufacturing in engineering,” CAD Comput. Aided Des., vol. 69, pp. 65–89, 2015, doi: 10.1016/j.cad.2015.04.001.[3] Y. Jin, J. Du, Y. He, and G. Fu, “Modeling and process planning for curved layer fused deposition,” Int. J. Adv. Manuf. Technol., vol. 91, no. 1–4, pp. 273–285, 2017, doi: 10.1007/s00170-016-9743-5.[4] R. J. A. Allen and R. S. Trask, “An experimental demonstration of effective Curved Layer Fused Filament Fabrication utilising a parallel deposition robot,” Addit. Manuf., vol. 8, pp. 78–87, 2015, doi: 10.1016/j.addma.2015.09.001.[5] W. Gao, Y. Zhang, D. C. Nazzetta, K. Ramani, R. J. Cipra, and W. Lafayette, “RevoMaker : Enabling Multi-directional and Functionally-embedded 3D Printing using a Rotational Cuboidal Platform,” Proc. 28th Annu. ACM Symp. User Interface Softw. Technol. - UIST ’15, pp. 437–446, 2015, doi: 10.1145/2807442.2807476.[6] X. Song, Y. Pan, and Y. Chen, “Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing,” J. Manuf. Sci. Eng., vol. 137, no. April, pp. 1–13, 2015, doi: 10.1115/1.4028897.[7] D. Bourell, B. Stucker, Y. Chen, C. Zhou, and J. Lao, “A layerless additive manufacturing process based on CNC accumulation,” Rapid Prototyp. J., vol. 17, no. 3, pp. 218–227, 2011.[8] Z.-F. Shao, X. Tang, X. Chen, and L.-P. Wang, “Research on the inertia matching of the Stewart parallel manipulator,” Robot. Comput. Integr. Manuf., vol. 28, no. 6, pp. 649–659, 2012, doi: 10.1016/j.rcim.2012.04.001.[9] P. Ogbobe, Z. Ye, H. Jiang, and J. Han, “Analytical Formulation of Coupling Effects Matrix Between Degrees of Freedom Motion of Parallel Robots,” in Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on, 2010, vol. 1, pp. 711–714, doi: 10.1109/ICICTA.2010.368.[10] K. Deb, Optimization for Engineering Design, 2nd ed. New Delhi: PHI Learning Private Limited, 2012.[11] J. Ruan, K. Eiamsa-ard, and F. W. Liou, “Automatic process planning and toolpath generation of a multiaxis hybrid manufacturing system,” J. Manuf. Process., vol. 7, no. 1, pp. 57–68, 2005.[12] K. Gupta, N. K. Jain, and R. F. Laubscher, Hybrid machining processes: perspectives on machining and finishing. Springer, 2016.[13] A. El Khalick, M. N. Uchiyama, and S. Sano, “Sliding mode contouring control design using nonlinear sliding surface for three-dimensional machining,” Int. J. Mach. TOOLS Manuf., vol. 65, pp. 8–14, Feb. 2013, doi: 10.1016/j.ijmachtools.2012.07.004.[14] S.-H. Chen and L.-C. Fu, “Observer-based backstepping control of a 6-dof parallel hydraulic manipulator,” Control Eng. Pract., vol. 36, pp. 100–112, Mar. 2015, doi: 10.1016/j.conengprac.2014.11.011.[15] J. P. Merlet, Parallel robots, 2nd ed., vol. 128. Dordrecht: Springer Science & Business Media, 2006.[16] Z. Pandilov and V. Dukovski, “Comparison of the Characteristics Between Serial and Parallel Robots,” Acta Tech. Corviniensis-Bulletin Eng., vol. 7, no. 1, pp. 2067–3809, 2014, [Online]. Available: https://acta.fih.upt.ro/pdf/2014-1/ACTA-2014-1-19.pdf.[17] W. Lei, F. Qian, C. Jia, and S. Liye, “Control Method of Parallel Robot Based on Adaptive Neural Fuzzy Inference Combined with PID Control,” Agro Food Ind. Hi. Tech., vol. 28, no. 3, pp. 3169–3174, 2017.[18] D. Zhang, Y. Xu, J. Yao, B. Hu, and Y. Zhao, “Kinematics, dynamics and stiffness analysis of a novel 3-DOFkinematically/actuation redundant planar parallel mechanism,” Mech. Mach. THEORY, vol. 116, pp. 203–219, Oct. 2017, doi: 10.1016/j.mechmachtheory.2017.04.011.[19] M. Ming, A., Kajitani, “On the design of wire parallel mechanism,” Int. J. Jpn Soc. Precis. Eng, vol. 4, no. 29, pp. 337–242, 1995.[21] G. Gogu, “Mobility of mechanisms: a critical review,” Mech. Mach. Theory, vol. 40, no. 9, pp. 1068–1097, Sep. 2005, doi: 10.1016/J.MECHMACHTHEORY.2004.12.014. [22] W. J. Liu, Xin-Jun, parallel Kinematics: Type, Kinematics, and Optimal Design, 1st ed. London: Springer London, 2014.[23] J. P. Merlet, “Jacobian, manipulability, condition number and accuracy of parallel robots,” Springer Tracts Adv. Robot., vol. 28, 2007, doi: 10.1007/978-3-540-48113-3_16. [24] B. Dasgupta and P. Choudhury, “General strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators,” Mech. Mach. Theory, vol. 34, no. 6, pp. 801–824, 1999, doi: 10.1016/S0094-114X(98)00081-0.[25] X. Wang and Y. Tian, “Inverse dynamics of hexa parallel robot based on the lagrangian equations of first type,” 2010 Int. Conf. Mech. Autom. Control Eng. MACE2010, no. 2008, pp. 3712–3716, 2010, doi: 10.1109/MACE.2010.5535969.[26] A. A. Shabana, Computational Dynamics, 3rd ed. John Wiley & Sons, 2010.[27] M. DANESHMAND, M. M. TALE, and M. H. SAADATZI, “Optimization of the Kinematic Sensitivity and the Greatest Continuous Circle in the Constant-orientation Workspace of Planar Parallel Mechanisms,” 2015.[28] Y. Liu, H. Wu, Y. Yang, S. Zou, X. Zhang, and Y. Wang, “Symmetrical Workspace of 6-UPS Parallel Robot Using Tilt and Torsion Angles,” vol. 2018, 2018.[29] X. J. Liu, J. Wang, K. K. Oh, and J. Kim, “A new approach to the design of a DELTA robot with a desired workspace,” J. Intell. Robot. Syst. Theory Appl., vol. 39, no. 2, pp. 209–225, 2004, doi: 10.1023/B:JINT.0000015403.67717.68.[30] S. T. Filho and E. Cabral, “Kinematics and workspace analysis of a parallel architecture robot: the Hexa,” 18th Int. Congr. Mech. Eng. Novemb. 6-11, Ouro Preto, MG, vol. 2, no. August, pp. 158–165, 2005, [Online]. Available: http://www.abcm.org.br/pt/wp-content/anais/cobem/2005/PDF/COBEM2005-0095.pdf.[31] J.-P. Merlet, “Jacobian, manipulability, condition number and accuracy of parallel robots.”[32] J. D. Orozco-Muñiz, J. J. Cervantes-Sánchez, and J. M. Rico-Martínez, “Dexterity indices for planar parallel manipulators,” Robot. Comput. Integr. Manuf., vol. 46, pp. 144–155, Aug. 2017, doi: 10.1016/J.RCIM.2016.12.011.[33] A. Koszewnik, K. Troc, and M. Słowik, “PID controllers design applied to positioning of ball on the stewart platform,” Acta Mech. Autom., vol. 8, no. 4, pp. 214–218, 2014, doi: 10.2478/ama-2014-0039.[34] F. Inel and L. Khochmane, “Comparison performance between PID and PD controllers for three and four cable-based robots,” World J. Eng., vol. 11, no. 6, pp. 543–556, 2014, doi: 10.1260/1708-5284.11.6.543.[35] S. Keshtkar, A. S. Poznyak, E. Hernandez, and A. Oropeza, “Adaptive Sliding-Mode Controller Based on the ``Super-Twist’’ State Observer for Control of the Stewart Platform,” Autom. Remote Control, vol. 78, no. 7, pp. 1218–1233, Jul. 2017, doi: 10.1134/S0005117917070049.[36] H. Sira-Ramirez and S. K. Agrawal, Differentially Flat Systems, 2nd ed. Boca Raton: CRC Press, 2018.[37] K. Ogata, Modern Control Engineering, 5th ed. New Jersey: Prentice Hall, 2010.[38] J. Liu, “Basic sliding mode control principle and design,” in Sliding Mode Control Using MATLAB, Academic Press, 2017, pp. 1–29.[39] V. I. Utkin, Sliding Modes in Control and Optimization, 2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.[40] J. Slotine and W. Li, Applied Nonlinear Control. 1990.[41] H. Lee and V. I. Utkin, “Chattering suppression methods in sliding mode control systems,” Annu. Rev. Control, vol. 31, no. 2, pp. 179–188, Jan. 2007, doi: 10.1016/J.ARCONTROL.2007.08.001.[42] A. M. Piña, “Trajectory generation of differentially flat systems,” Rev. Técnologica Ingieneria Univ. Zulia, vol. 24, no. 2, pp. 99–106, 2001.[43] A. Morillo, “Trajectory generation of differentially flat systems,” Rev. técnica la Fac. Ing. del Zulia., vol. 24, no. 2, pp. 99–106, 2001.[44] S. Rao, Engineering Optimization. Theory and Practice, 4th ed. John Wiley & Sons, Ltd, 2009.[45] K. Deb, Multi Objective Optimization using Evolutionary Algorithms, 1st ed. West Sussex: Wiley, 2001.[46] V. D. Coello, Carlos, Lamont Gary, Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed. 2007.[47] J. Price, K.; Storn, R.; Lampinen, Differential Evolution. Berlin: Springer, 2005.[48] J. Lampinen and I. Zelinka, “Mixed Variable Non-linear Optimization by Difeerential Evolution,” Proccedings of Nostradamus, vol. 99, no. 2, pp. 1–10, 1999.[49] M. Weck and D. Staimer, “Parallel kinematic machine tools - Current state and future potentials,” CIRP Ann. - Manuf. Technol., vol. 51, no. 2, pp. 671–683, 2002, doi: 10.1016/S0007-8506(07)61706-5.[50] D. Stewart, “A Platform with Six Degrees of Freedom,” Proc. Inst. Mech. Eng., vol. 180, no. 1, pp. 371–386, Jun. 1965, doi: 10.1243/PIME_PROC_1965_180_029_02.[51] Y. Jiang, T. Li, L. Wang, and F. Chen, “Improving tracking accuracy of a novel 3-DOF redundant planar parallel kinematic machine,” Mech. Mach. Theory, vol. 119, pp. 198–218, 2018, doi: 10.1016/j.mechmachtheory.2017.09.012.[52] J. Fu, F. Gao, Y. Pan, and H. Du, “Forward kinematics solutions of a special six-degree-of-freedom parallel manipulator with three limbs,” Adv. Mech. Eng., vol. 7, no. 5, pp. 1–11, 2015, doi: 10.1177/1687814015582118.[53] W. Ye, Y. Fang, and S. Guo, “Design and analysis of a reconfigurable parallel mechanism for multidirectional additive manufacturing,” Mech. Mach. Theory, vol. 112, pp. 307–326, Jun. 2017, doi: 10.1016/J.MECHMACHTHEORY.2016.02.011.[54] A. Dutta, D. H. Salunkhe, S. Kumar, A. D. Udai, and S. V. Shah, “Sensorless full body active compliance in a 6 DOF parallel manipulator,” Robot. Comput. Integr. Manuf., vol. 59, no. May, pp. 278–290, 2019, doi: 10.1016/j.rcim.2019.04.010.[55] K. H. Hunt, “Structural kinematics of in-parallel-actuated robot-arms,” J. Mech. Transm. Autom. Des., vol. 105, no. 4, pp. 705–712, 1983.[56] C. Gosselin, T. Laliberte, and A. Veillette, “Singularity-Free Kinematically Redundant Planar Parallel Mechanisms With Unlimited Rotational Capability,” IEEE Trans. Robot., vol. 31, no. 2, pp. 457–467, Apr. 2015, doi: 10.1109/TRO.2015.2409433.[57] L.-T. Schreiber and C. Gosselin, “Kinematically redundant planar parallel mechanisms: Kinematics, workspace and trajectory planning,” Mech. Mach. Theory, vol. 119, pp. 91–105, 2018, doi: 10.1016/j.mechmachtheory.2017.08.022.[58] C. Chen, T. Gayral, S. Caro, D. Chablat, G. Moroz, and S. Abeywardena, “A Six Degree of Freedom Epicyclic-Parallel Manipulator,” J. Mech. Robot., vol. 4, no. 4, p. 041011, 2012, doi: 10.1115/1.4007489.[59] W. Li and J. Angeles, “The design of a 3-CPS parallel robot for maximum dexterity,” Mech. Mach. Theory, vol. 122, pp. 279–291, 2018, doi: 10.1016/j.mechmachtheory.2018.01.003.[60] H. Azulay, M. Mahmoodi, R. Zhao, J. K. Mills, and B. Benhabib, “Comparative analysis of a new 3× PPRS parallel kinematic mechanism,” Robot. Comput. Integr. Manuf., vol. 30, no. 4, pp. 369-378o, 2014, doi: 10.1016/j.rcim.2013.12.003.[61] Y. Song, B. Lian, T. Sun, G. Dong, Y. Qi, and H. Gao, “A novel five-degree-of-freedom parallel manipulator and its kinematic optimization,” J. Mech. Robot., vol. 6, no. 4, 2014, doi: 10.1115/1.4027742.[62] N. Seward and I. A. Bonev, “A new 6-DOF parallel robot with simple kinematic model,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 4061–4066, 2014, doi: 10.1109/ICRA.2014.6907449.[63] C. Viegas, M. Tavakoli, and A. T. d. Almeida, “A novel grid-based reconfigurable spatial parallel mechanism with large workspace,” Mech. Mach. Theory, vol. 115, pp. 149–167, 2017, doi: 10.1016/j.mechmachtheory.2017.05.008.[64] G. Yu, J. Wu, L. Wang, and Y. Gao, “Optimal Design of the Three-Degree-of-Freedom Parallel Manipulator in a Spray-Painting Equipment,” Robotica, vol. 38, no. 6, pp. 1064–1081, 2020.[65] H. Zhang, H. Fang, Q. Zou, and D. Zhang, “Dynamic modeling and adaptive robust synchronous control of parallel robotic manipulator for industrial application,” Complexity, vol. 2020, 2020.[66] A. Arian, M. Isaksson, and C. Gosselin, “Kinematic and dynamic analysis of a novel parallel kinematic Schönflies motion generator,” Mech. Mach. Theory, vol. 147, p. 103629, 2020.[67] S. Lu, B. Ding, and Y. Li, “Minimum-jerk trajectory planning pertaining to a translational 3-degree-of-freedom parallel manipulator through piecewise quintic polynomials interpolation,” Adv. Mech. Eng., vol. 12, no. 3, p. 1687814020913667, 2020.[68] X. Chai, M. Wang, L. Xu, and W. Ye, “Dynamic modeling and analysis of a 2PRU-UPR parallel robot based on screw theory,” Ieee Access, vol. 8, pp. 78868–78878, 2020.[69] S. Xie, K. Hu, H. Liu, and Y. Wan, “Dynamic modeling and performance analysis of a new redundant parallel rehabilitation robot,” IEEE Access, vol. 8, pp. 222211–222225, 2020.[70] H. Zhang, H. Fang, D. Zhang, Q. Zou, and X. Luo, “Trajectory tracking control study of a new parallel mechanism with redundant actuation,” Int. J. Aerosp. Eng., vol. 2020, 2020.[71] Y. Rong, X. C. Zhang, and M. K. Qu, “Unified inverse dynamics for a novel class of metamorphic parallel mechanisms,” Appl. Math. Model., vol. 74, pp. 280–300, 2019, doi: 10.1016/j.apm.2019.04.051.[72] S. Pedrammehr, B. Danaei, H. Abdi, M. T. Masouleh, and S. Nahavandi, “Dynamic analysis of Hexarot: Axis-symmetric parallel manipulator,” Robotica, vol. 36, no. 2, pp. 225–240, 2018, doi: 10.1017/S0263574717000315.[73] W. E. Dharmalingum, J. Padayachee, and G. Bright, “SYNTHESIS OF A NOVEL FIVE-DEGREES–OF-FREEDOM PARALLEL KINEMATIC MANIPULATOR,” South African J. Ind. Eng., vol. 32, no. 1, pp. 131–143, May 2021, doi: 10.7166/32-1-2382.[74] L. Sheng and W. Li, “Optimization design by genetic algorithm controller for trajectory control of a 3-RRR parallel robot,” Algorithms, vol. 11, no. 1, 2018, doi: 10.3390/a11010007.[75] M. Russo, S. Herrero, O. Altuzarra, and M. Ceccarelli, “Kinematic analysis and multi-objective optimization of a 3-UPR parallel mechanism for a robotic leg,” Mech. Mach. Theory, vol. 120, pp. 192–202, Feb. 2018, doi: 10.1016/J.MECHMACHTHEORY.2017.10.004.[76] A. G. Ruiz, J. C. Santos, J. Croes, W. Desmet, and M. M. Da Silva, “On redundancy resolution and energy consumption of kinematically redundant planar parallel manipulators,” Robotica, vol. 36, no. 6, pp. 809–821, Jun. 2018, doi: 10.1017/S026357471800005X.[77] D. Chablat, X. Kong, and C. Zhang, “Kinematics, workspace, and singularity analysis of a parallel robot with five operation modes,” J. Mech. Robot., vol. 10, no. 3, Jun. 2018, doi: 10.1115/1.4039400/377469.[78] H. Shen, Y. Tang, G. Wu, J. Li, T. Li, and T. Yang, “Design and analysis of a class of two-limb non-parasitic 2T1R parallel mechanism with decoupled motion and symbolic forward position solution - influence of optimal arrangement of limbs onto the kinematics, dynamics and stiffness,” Mech. Mach. Theory, vol. 172, p. 104815, Jun. 2022, doi: 10.1016/J.MECHMACHTHEORY.2022.104815.[79] H. Shen, D. Chablat, B. Zeng, J. Li, G. Wu, and T. L. Yang, “A Translational Three-Degrees-of-Freedom Parallel Mechanism with Partial Motion Decoupling and Analytic Direct Kinematics,” J. Mech. Robot., vol. 12, no. 2, Jan. 2020, doi: 10.1115/1.4045972/1072539.[80] M. Vallés et al., “Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator,” Mech. Based Des. Struct. Mach., vol. 46, no. 4, pp. 425–439, 2018, doi: 10.1080/15397734.2017.1355249.[81] O. Altuzarra, D. Caballero, F. J. Campa, and C. Pinto, “Position analysis in planar parallel continuum mechanisms,” Mech. Mach. Theory, vol. 132, pp. 13–29, Feb. 2019, doi: 10.1016/J.MECHMACHTHEORY.2018.10.014.[82] J. J. Gil, I. Zabalza, J. Ros, J. M. Pintor, and J. M. Jiménez, “Kinematics and dynamics of a 6-RUS hunt-type parallel manipulator by using natural coordinates,” in On Advances in Robot Kinematics, Springer, 2004, pp. 329–335.[83] J. Aginaga, I. Zabalza, O. Altuzarra, and J. Nájera, “Improving static stiffness of the 6-RUS parallel manipulator using inverse singularities,” Robot. Comput. Integr. Manuf., vol. 28, no. 4, pp. 458–471, 2012, doi: 10.1016/j.rcim.2012.02.003.[84] J. Hesselbach, C. Bier, A. Campos, and H. Lowe, “Direct kinematic singularity detection of a hexa parallel robot,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, 2005, pp. 3238–3243.[85] M. Dehghani, M. Ahmadi, A. Khayatian, M. Eghtesad, and M. Yazdi, “Vision-based calibration of a Hexa parallel robot,” Ind. Robot An Int. J., vol. 41, no. 3, pp. 296–310, 2014.[86] D. Chen, S. Li, J. F. Wang, Y. Feng, and Y. Liu, “A multi-objective trajectory planning method based on the improved immune clonal selection algorithm,” Robot. Comput. Integr. Manuf., vol. 59, pp. 431–442, Oct. 2019, doi: 10.1016/J.RCIM.2019.04.016.[87] S. Li, D. Chen, and J. Wang, “An optimal singularity-free motion planning method for a 6-DOF parallel manipulator,” Ind. Rob., vol. 48, no. 2, pp. 290–299, 2020, doi: 10.1108/IR-04-2020-0079/FULL/XML.[88] A. Antonov and V. Glazunov, “Position, velocity, and workspace analysis of a novel 6-DOF parallel manipulator with ‘piercing’ rods,” Mech. Mach. Theory, vol. 161, p. 104300, Jul. 2021, doi: 10.1016/J.MECHMACHTHEORY.2021.104300.[89] M. F. Shah, Z. Kausar, M. U. Farooq, L. A. Khan, and S. S. Farooq, “Accuracy Analysis of Machining Trajectory Contemplating Workpiece Dislocation on a Six Degree of Freedom Machining Bed:,” https://doi-org.bd.univalle.edu.co/10.1177/0954406220974049, vol. 235, no. 19, pp. 4037–4048, Dec. 2020, doi: 10.1177/0954406220974049.[90] A. Fomin, A. Antonov, V. Glazunov, and Y. Rodionov, “Inverse and Forward Kinematic Analysis of a 6-DOF Parallel Manipulator Utilizing a Circular Guide,” Robot. 2021, Vol. 10, Page 31, vol. 10, no. 1, p. 31, Feb. 2021, doi: 10.3390/ROBOTICS10010031.[91] K. Wang, X. Wu, Y. Wang, J. Ding, and S. Bai, “Kinematics of a 6-DOF parallel manipulator with two limbs actuated by spherical motion generators:,” https://doi-org.bd.univalle.edu.co/10.1177/09544062211032998, Dec. 2021, doi: 10.1177/09544062211032998.[92] Y. Liwei, F. Yanchao, C. Fangmao, P. Xinyuan, and D. deyi, “Parameter calibration of 6-degree-of-freedom parallel mechanism based on orthogonal displacement measuring system,” Optik (Stuttg)., vol. 226, p. 165806, Jan. 2021, doi: 10.1016/J.IJLEO.2020.165806.[93] M. J. Thomas, M. M. Sanjeev, A. P. Sudheer, and J. M.L, “Comparative study of various machine learning algorithms and Denavit–Hartenberg approach for the inverse kinematic solutions in a 3-PPSS parallel manipulator,” Ind. Rob., vol. 47, no. 5, pp. 683–695, Aug. 2020, doi: 10.1108/IR-11-2019-0233/FULL/XML.[94] R. V. Anirudh, K. A. Sai, S. Kulothungan, and A. K. Dash, “An Application of a 3-RRRS 6 DOF Parallel Manipulator,” J. Title, vol. 10, no. 1, pp. 501–509, 2020, doi: 10.5875/AUSMT.V10I1.2048.[95] X. Liang and Y. Takeda, “An iterative method for the inverse kinematics of lower-mobility parallel mechanism with three RS or SR chains based on kinematically equivalent mechanism,” Mech. Mach. Theory, vol. 141, pp. 40–51, Nov. 2019, doi: 10.1016/J.MECHMACHTHEORY.2019.06.033.[96] H. S. A. Q. E. Han, C. Y. Han, Z. B. Xu, M. C. Zhu, Y. Yu, and Q. W. Wu, “Kinematics analysis and testing of novel 6-P-RR-R-RR parallel platform with offset RR-joints:,” https://doi-org.bd.univalle.edu.co/10.1177/0954406218817001, vol. 233, no. 10, pp. 3512–3530, Dec. 2018, doi: 10.1177/0954406218817001.[97] Z. M. Bi and B. Kang, “An Inverse Dynamic Model of Over-Constrained Parallel Kinematic Machine Based on Newton–Euler Formulation,” J. Dyn. Syst. Meas. Control, vol. 136, no. 4, p. 041001, Mar. 2014, doi: 10.1115/1.4026533.[98] A. Arian, B. Danaei, and M. Tale Masouleh, “Kinematic and Dynamic Analysis of Tripteron, an Over-constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach,” AUT J. Model. Simul., vol. 50, no. 1, pp. 61–70, Jun. 2018, doi: 10.22060/MISCJ.2018.13020.5055.[99] B. Zhang, S. Jiang, Z. Jiang, J. Li, K. Zhou, and F. Liu, “Dynamic Analysis and Control Research of a 3-DOF Hydraulic Driven Parallel Mechanism,” Recent Patents Mech. Eng., vol. 13, no. 2, pp. 156–170, 2020, doi: 10.2174/2212797613666200210113800.[100] J. Li et al., “Mechanical design and performance analysis of a novel parallel robot for ankle rehabilitation,” J. Mech. Robot., vol. 12, no. 5, p. 51007, 2020, doi: 10.1115/1.4046511.[101] Z. Wang, N. Zhang, X. Chai, and Q. Li, “Kinematic/dynamic analysis and optimization of a 2-URR-RRU parallel manipulator,” NONLINEAR Dyn., vol. 88, no. 1, pp. 503–519, 2017, doi: 10.1007/s11071-016-3256-5.[102] Y. Zhao, H. Yu, J. Zhang, J. Yang, and T. Zhao, “Kinematics, dynamics and control of a stabilized platform with a 6-RUS parallel mechanism,” Int. J. Robot. Autom., vol. 32, no. 3, pp. 283–290, 2017.[103] A. Arian, B. Danaei, and M. T. Masouleh, “Kinematics and dynamics analysis of a 2-dof spherical parallel robot,” in 2016 4th international conference on robotics and mechatronics (ICROM), 2016, pp. 154–159, doi: 10.1109/ICRoM.2016.7886838.[104] C. Xiulong, L. Yuewen, and J. Yonghao, “Dynamic response and nonlinear characteristics of spatial parallel mechanism with spherical clearance joint,” J. Comput. Nonlinear Dyn., vol. 14, no. 4, 2019, doi: 10.1115/1.4042636.[105] J. Brinker, B. Corves, and M. Wahle, “A comparative study of inverse dynamics based on Clavel’s delta robot,” 2015 IFToMM World Congr. Proceedings, IFToMM 2015, 2015, doi: 10.6567/IFToMM.14TH.WC.OS13.026.[106] M. J. Thomas, M. L. Joy, and A. P. Sudheer, “Kinematic and Dynamic Analysis of a 3-PRUS Spatial Parallel Manipulator,” Chinese J. Mech. Eng. (English Ed., vol. 33, no. 1, pp. 1–17, Dec. 2020, doi: 10.1186/S10033-020-0433-8/FIGURES/18.[107] Y.-L. Kuo and S.-C. Tang, “Dynamics and control of a 3-dof planar parallel manipulator using visual servoing resolved acceleration control,” J. Low Freq. Noise, Vib. Act. Control, vol. 40, no. 1, pp. 458–480, 2021, doi: 10.1177/1461348419876154.[108] V. Muralidharan, T. K. Mamidi, S. Guptasarma, A. Nag, and S. Bandyopadhyay, “A comparative study of the configuration-space and actuator-space formulations of the Lagrangian dynamics of parallel manipulators and the effects of kinematic singularities on these,” Mech. Mach. Theory, vol. 130, pp. 403–434, 2018, doi: 10.1016/j.mechmachtheory.2018.07.009.[109] J. Bernal, R. Campa, and I. Soto, “Kinematics and dynamics modeling of the 6-3- PUS-type Hexapod parallel mechanism,” J. Mech. Sci. Technol., vol. 32, no. 10, pp. 4555–4570, Oct. 2018, doi: 10.1007/s12206-018-0901-6.[110] C. Zhu, J. Katupitiya, and J. Wang, “Effect of links deformation on motion precision of parallel manipulatorbased on flexible dynamics,” Ind. Robot. Int. J., vol. 44, no. 6, pp. 776–787, 2017, doi: 10.1108/IR-12-2016-0368.[111] Z. Geng, L. S. Haynes, J. D. Lee, and R. L. Carroll, “On the dynamic model and kinematic analysis of a class of Stewart platforms,” Rob. Auton. Syst., vol. 9, no. 4, pp. 237–254, Jan. 1992, doi: 10.1016/0921-8890(92)90041-V.[112] Lung-Wen Tsai, G. C. Walsh, and R. E. Stamper, “Kinematics of a novel three DOF translational platform,” in Proceedings of IEEE International Conference on Robotics and Automation, vol. 4, pp. 3446–3451, doi: 10.1109/ROBOT.1996.509237.[113] B. Danaei, A. Arian, M. T. Masouleh, and A. Kalhor, “Kinematic and Dynamic Modeling and Base Inertial Parameters Determination of the Quadrupteron Parallel Manipulator,” 2018, pp. 249–256.[114] R. Li, S. Wang, D. Fan, Y. Du, and S. Bai, “Dynamic modeling of a 2-RPU+2-UPS hybrid manipulator for machining application,” Model. Identif. Control, vol. 38, no. 4, pp. 169–184, 2017, doi: 10.4173/mic.2017.4.2.[115] J. Gallardo-Alvarado, R. Rodríguez-Castro, and P. J. Delossantos-Lara, “Kinematics and dynamics of a 4-PRUR Schönflies parallel manipulator by means of screw theory and the principle of virtual work,” Mech. Mach. Theory, vol. 122, pp. 347–360, 2018, doi: 10.1016/j.mechmachtheory.2017.12.022.[116] H. Yang, H. Fang, Y. Fang, and H. Qu, “Kinematics performance and dynamics analysis of a novel parallel perfusion manipulator with passive link,” Math. Probl. Eng., vol. 2018, 2018, doi: 10.1155/2018/6768947.[117] D. Li et al., “Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle,” Nucl. Eng. Technol., vol. 52, no. 11, pp. 2630–2637, 2020, doi: 10.1016/j.net.2020.04.017.[118] R. Li, S. Wang, D. Fan, Y. Du, and S. Bai, “Dynamic Modeling of a 2-RPU+2-UPS Hybrid Manipulator for Machining Application,” Model. Identif. Control A Nor. Res. Bull., vol. 38, no. 4, pp. 169–184, 2017, doi: 10.4173/mic.2017.4.2.[119] G. Han, F. Xie, and X.-J. Liu, “Evaluation of the power consumption of a high-speed parallel robot,” Front. Mech. Eng., vol. 13, no. 2, pp. 167–178, 2018, doi: 10.1007/s11465-017-0456-8.[120] A. Arian, M. Isaksson, and C. Gosselin, “Kinematic and dynamic analysis of a novel parallel kinematic Schönflies motion generator,” Mech. Mach. Theory, vol. 147, p. 103629, May 2020, doi: 10.1016/J.MECHMACHTHEORY.2019.103629.[121] P. Li, A. Ghasemi, W. Xie, and W. Tian, “Visual Closed-Loop Dynamic Model Identification of Parallel Robots Based on Optical CMM Sensor,” Electron. 2019, Vol. 8, Page 836, vol. 8, no. 8, p. 836, Jul. 2019, doi: 10.3390/ELECTRONICS8080836.[122] X. Song, Y. Zhao, L. Jin, P. Zhang, and C. Chen, “Dynamic feedforward control in decoupling space for a four-degree-of-freedom parallel robot:,” https://doi.org/10.1177/1729881418820451, vol. 16, no. 1, Jan. 2019, doi: 10.1177/1729881418820451.[123] A. Arian, B. Danaei, H. Abdi, and S. Nahavandi, “Kinematic and dynamic analysis of the Gantry-Tau, a 3-DoF translational parallel manipulator,” Appl. Math. Model., vol. 51, pp. 217–231, 2017, doi: 10.1016/j.apm.2017.06.012.[124] S. S. Parsa, R. Boudreau, and J. A. Carretero, “Reconfigurable mass parameters to cross direct kinematic singularities in parallel manipulators,” Mech. Mach. Theory, vol. 85, pp. 53–63, Mar. 2015, doi: 10.1016/J.MECHMACHTHEORY.2014.10.008.[125] J.-H. Choi, T. Seo, and J. W. Lee, “Singularity analysis of a planar parallel mechanism with revolute joints based on a geometric approach,” Int. J. Precis. Eng. Manuf., vol. 14, no. 8, pp. 1369–1375, Aug. 2013, doi: 10.1007/s12541-013-0185-9.[126] C. Gosselin and J. Angeles, “Singularity analysis of closed-loop kinematic chains,” IEEE Trans. Robot. Autom., vol. 6, no. 3, pp. 281–290, Jun. 1990, doi: 10.1109/70.56660.[127] C. Gosselin, “Determination of the workspace of 6-DOF parallel manipulators,” J. Mech. Des., vol. 112, no. 3, pp. 331–336, 1990, doi: 10.1115/1.2912612.[128] I. A. Bonev and J. Ryu, “A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators,” Mech. Mach. theory, vol. 36, no. 1, pp. 1–13, 2001, doi: 10.1016/S0094-114X(00)00031-8.[129] H. An, B. Li, S. Wang, and W. Ge, “Kinematics and Transmission Performance Analyses of a 2T2R Type 4-DOF Spatial Parallel Manipulator,” J. Robot., vol. 2018, 2018, doi: 10.1155/2018/4750627.[130] E. Mirshekari, A. Ghanbarzadeh, and K. H. Shirazi, “Structure comparison and optimal design of 6-rus parallel manipulator based on kinematic and dynamic performances,” Lat. Am. J. Solids Struct., vol. 13, no. 13, pp. 2414–2438, 2016, doi: 10.1590/1679-78252937.[131] F. La Mura, P. Romanó, E. Fiore, and H. Giberti, “Workspace limiting strategy for 6 DOF force controlled PKMs manipulating high inertia objects,” Robotics, vol. 7, no. 1, 2018, doi: 10.3390/robotics7010010.[132] E. Mirshekari, A. Ghanbarzadeh, K. H. Shirazia, E. Mirshekari, A. Ghanbarzadeh, and K. H. Shirazia, “Structure comparison and optimal design of 6-RUS parallel manipulator based on kinematic and dynamic performances,” Lat. Am. J. Solids Struct., vol. 13, no. 13, pp. 2414–2438, Dec. 2016, doi: 10.1590/1679-78252937.[133] M. J.P., “Interval analysis and reliability in robotics,” Int. J. Reliab. Saf., vol. 3, no. 1–3, pp. 104–130, 2009.[134] E. Fiore, H. Giberti, and L. Sbaglia, “Dimensional synthesis of a 5-DOF parallel kinematic manipulator for a 3d printer,” 16th Int. Conf. Res. Educ. Mechatronics, REM 2015 - Proc., pp. 41–52, 2016, doi: 10.1109/REM.2015.7380372.[135] S. Abeywardena and C. Chen, “Implementation and evaluation of a three-legged six-degrees-of-freedom parallel mechanism as an impedance-type haptic device,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 3, pp. 1412–1422, 2017, doi: 10.1109/TMECH.2017.2682930.[136] P. Grosch, R. Di Gregorio, J. Lopez, and F. Thomas, “Motion Planning for a Novel Reconfigurable Parallel Manipulatorwith Lockable Revolute Joints,” IEEE Int. Conf. Robot. Autom., pp. 4697–4702, 2010, doi: 10.1109/ROBOT.2010.5509305.[137] K. Miller, “Optimal design and modeling of spatial parallel manipulators,” Int. J. Rob. Res., vol. 23, no. 2, pp. 127–140, 2004, doi: 10.1177/0278364904041322. [138] S. Pedrammehr, M. R. C. Qazani, H. Asadi, M. M. Ettefagh, and S. Nahavandi, “Model-based control of axisymmetric hexarot parallel manipulators,” Results Control Optim., vol. 7, Feb. 2023, doi: 10.1016/J.RICO.2022.100135.[139] A. Valencia, M. Mauledoux, and C. Castañeda, “Design of Dynamic Controllers for Continuous Paths on Parallel Platforms (Slide Modes and PD+),” MATEC Web Conf., vol. 306, no. 20 20, p. 03005, 2020, doi: 10.1051/matecconf/202030603005.[140] V. Prada-Jimenez, P. A. Nino-Suarez, E. A. Portilla-Flores, and M. F. Mauledoux-Monroy, “Tuning a PD+ controller by means of dynamic optimization in a mobile manipulator with coupled dynamics,” IEEE Access, vol. 7, pp. 124712–124726, 2019, doi: 10.1109/ACCESS.2019.2936309.[141] D. . Nunez, M. Mauledoux, O. Aviles, J. Guacheta, and S. Gonzalez, “Optimal Design of Kinematics Parallel Manipulator Considering Workspace and Control,” Int. J. Mech. Eng. Robot. Res., vol. 11, no. 4, 2022.[142] H. Q. Zhang, H. R. Fang, B. S. Jiang, and S. G. Wang, “Dynamic Performance Evaluation of a Redundantly Actuated and Over-constrained Parallel Manipulator,” Int. J. Autom. Comput. 2018 163, vol. 16, no. 3, pp. 274–285, Oct. 2018, doi: 10.1007/S11633-018-1147-6.[143] J. Wu, Y. Gao, B. Zhang, and L. Wang, “Workspace and dynamic performance evaluation of the parallel manipulators in a spray-painting equipment,” Robot. Comput. Integr. Manuf., vol. 44, pp. 199–207, 2017, doi: 10.1016/j.rcim.2016.09.002.[144] Y. Zhao, Z. Zhang, and G. Cheng, “Inverse rigid-body dynamic analysis for a 3UPS-PRU parallel robot,” Adv. Mech. Eng., vol. 9, no. 2, Feb. 2017, doi: 10.1177/1687814017693194.[145] C. Li, N. Wang, K. Chen, and X. Zhang, “Prescribed flexible orientation workspace and performance comparison of non-redundant 3-DOF planar parallel mechanisms,” Mech. Mach. Theory, vol. 168, p. 104602, 2022, doi: 10.1016/j.mechmachtheory.2021.104602.[146] G. Yu, J. Wu, L. Wang, and Y. Gao, “Optimal Design of the Three-Degree-of-Freedom Parallel Manipulator in a Spray-Painting Equipment,” Robotica, vol. 38, no. 6, pp. 1064–1081, Jun. 2020, doi: 10.1017/S0263574719001255.[147] G. Huang, S. Guo, D. Zhang, H. Qu, and H. Tang, “Kinematic analysis and multi-objective optimization of a new reconfigurable parallel mechanism with high stiffness,” Robotica, vol. 36, no. 2, pp. 187–203, 2018, doi: 10.1017/S0263574717000236.[148] C. Li, H. Wu, and H. Eskelinen, “Design and Multi-Objective Optimization of a Dexterous Mobile Parallel Mechanism for Fusion Reactor Vacuum Vessel Assembly,” IEEE Access, vol. 9, pp. 153796–153810, 2021, doi: 10.1109/ACCESS.2021.3127947.[149] B. Shi and H. Wu, “Designation and Multiobjective Optimization of a New Six-DOF Haptic Device Based on Genetic Algorithm,” Wirel. Commun. Mob. Comput., vol. 2021, 2021, doi: 10.1155/2021/5551585.[150] Q. Zou, D. Zhang, X. Luo, G. Huang, L. Li, and H. Zhang, “Enumeration and optimum design of a class of translational parallel mechanisms with prismatic and parallelogram joints,” Mech. Mach. Theory, vol. 150, p. 103846, Aug. 2020, doi: 10.1016/J.MECHMACHTHEORY.2020.103846.[151] T. Sun and B. Lian, “Stiffness and mass optimization of parallel kinematic machine,” Mech. Mach. Theory, vol. 120, pp. 73–88, 2018, doi: 10.1016/j.mechmachtheory.2017.09.014.[152] J. Enferadi and R. Nikrooz, “The Performance Indices Optimization of a Symmetrical Fully Spherical Parallel Mechanism for Dimensional Synthesis,” J. Intell. Robot. Syst. Theory Appl., vol. 90, no. 3–4, pp. 305–321, 2018, doi: 10.1007/s10846-017-0675-6.[153] T. L. Saaty, “Decision making with the analytic hierarchy process,” Int. J. Serv. Sci., vol. 1, no. 1, p. 83, 2008, doi: 10.1504/IJSSCI.2008.017590.[154] G. Improta, M. A. Russo, M. Triassi, G. Converso, T. Murino, and L. C. Santillo, “Use of the AHP methodology in system dynamics: Modelling and simulation for health technology assessments to determine the correct prosthesis choice for hernia diseases,” Math. Biosci., vol. 299, no. June 2017, pp. 19–27, 2018, doi: 10.1016/j.mbs.2018.03.004.[155] A. V. Nguyen, B. C. Bouzgarrou, K. Charlet, and A. Béakou, “Static and dynamic characterization of the 6-Dofs parallel robot 3CRS,” Mech. Mach. theory, vol. 93, pp. 65–82, 2015.[156] F. Pierrot, “A new design of a 6-DOF parallel robot,” J. Robot. Mechatronics, vol. 2, no. 4, pp. 308–315, 1990.[157] A. Şumnu, İ. H. Güzelbey, M. V Çakir, A. Sumnu, I. H. Guzelbey, and M. V. Cakir, “Simulation and PID control of a Stewart platform with linear motor,” J. Mech. Sci. Technol., vol. 31, no. 1, pp. 345–356, 2017, doi: 10.1007/s12206-016-1238-7.[158] R. G. Budynas, R. G. Budynas, and J. K. Nisbett, Shigley’s Mechanical Engineering Design. McGraw-Hill Education, 2014.[159] A. J. Valencia, M. Mauledoux, and D. A. Nunez, “Inverse and Direct Kinematics of Hexa Parallel Robot of Six Degrees of Freedom,” Int. J. Mech. Eng. Robot. Res., vol. 8, no. 5, 2019, doi: 10.18178/ijmerr.8.5.748-752.[160] Y. Zhao and F. Gao, “Inverse dynamics of the 6-dof out-parallel manipulator by means of the principle of virtual work,” Robotica, vol. 27, no. 2, pp. 259–268, Mar. 2009, doi: 10.1017/S0263574708004657.[161] J. Wu, X. Chen, and L. Wang, “Design and Dynamics of a Novel Solar Tracker with Parallel Mechanism,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 1, pp. 88–97, Feb. 2016, doi: 10.1109/TMECH.2015.2446994.[162] J. J. Craig, Introduction to robotics: mechanics and control, vol. 3. Pearson/Prentice Hall Upper Saddle River, NJ, USA:, 2005.[163] R. Silva-Ortigoza, H. Sira-Ramírez, and V. M. Hernández-Guzmán, “Control of the DC/DC boost converter using sliding modes and differential flatness: Experimental results,” RIAI - Rev. Iberoam. Autom. e Inform. Ind., vol. 5, no. 4, pp. 77–82, 2008, doi: 10.1016/s1697-7912(08)70180-8.[164] R. Kumar, S. C. Kaushik, R. Kumar, and R. Hans, “Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making,” Ain Shams Eng. J., vol. 7, no. 2, pp. 741–753, 2016, doi: 10.1016/j.asej.2015.06.007.[165] C. Coello, G. Lamont, and D. Van Veldhuizen, “Emoobook,” Appendix, 2007. http://www.cs.cinvestav.mx/~emoobook/ (accessed Mar. 29, 2022).[166] G. G. Yen and Z. He, “Performance metric ensemble for multiobjective evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 18, no. 1, pp. 131–144, Feb. 2014, doi: 10.1109/TEVC.2013.2240687.[167] G.-A. Vargas-Hákim, E. Mezura-Montes, and E. Galván, “Evolutionary Multi-Objective Energy Production Optimization: An Empirical Comparison,” Math. Comput. Appl., vol. 25, no. 2, p. 32, 2020, doi: 10.3390/mca25020032.[168] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398–417, 2009, doi: 10.1109/TEVC.2008.927706.[169] D. Nunez, M. Mauricio, and A. Oscar, “Optimal Design of the HEXA RUS Mechanism,” 2022.ORIGINALNuñezVallejosDiegoAlejandro2023.pdfNuñezVallejosDiegoAlejandro2023.pdfTesisapplication/pdf12278038http://repository.unimilitar.edu.co/bitstream/10654/45172/1/Nu%c3%b1ezVallejosDiegoAlejandro2023.pdf30793601a0cf39bac6f3c66cf3a84688MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83420http://repository.unimilitar.edu.co/bitstream/10654/45172/2/license.txta609d7e369577f685ce98c66b903b91bMD52open access10654/45172oai:repository.unimilitar.edu.co:10654/451722024-04-01 09:59:45.523open accessRepositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K