Análisis de datos determinantes para la elegibilidad de tarjeta de crédito
Esta investigación presenta un análisis evaluativo realizado en Google Colab sobre una base de datos de una entidad financiera que estudia las diferentes características demográficas, laborales y socioeconómicas de cada individuo presente en dicha base. Para posteriormente determinar si puede ser el...
- Autores:
-
Bruges, Pedro
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad del Magdalena
- Repositorio:
- Repositorio Unimagdalena
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unimagdalena.edu.co:123456789/21778
- Acceso en línea:
- https://repositorio.unimagdalena.edu.co/handle/123456789/21778
- Palabra clave:
- – Machine Learning
Google Colab
Optimizar
- Rights
- openAccess
- License
- Acceso Abierto
Summary: | Esta investigación presenta un análisis evaluativo realizado en Google Colab sobre una base de datos de una entidad financiera que estudia las diferentes características demográficas, laborales y socioeconómicas de cada individuo presente en dicha base. Para posteriormente determinar si puede ser elegido en la tarjeta de crédito que ofrece la entidad. A raíz de esto, se plantea modelos de clasificación de Machine Learning para predecir la elegibilidad, factores claves, mejorar decisiones y evaluar desempeño. Todo esto con la intención de optimizar el proceso de elección. |
---|