Exploration of a ViT-based multimodal approach to Vehicle Accident Detection

Multimodal Deep Learning (MMDL) has emerged as a potent framework for synthesizing information from diverse data sources, enhancing the capability of models to understand and predict complex phenomena. Particularly, Vision Transformers (ViT) have shown promising results in processing visual data alo...

Full description

Autores:
Ríos Pérez, Jesús David
Tipo de recurso:
https://vocabularies.coar-repositories.org/resource_types/c_7a1f/
Fecha de publicación:
2024
Institución:
Universidad del Magdalena
Repositorio:
Repositorio Unimagdalena
Idioma:
eng
OAI Identifier:
oai:repositorio.unimagdalena.edu.co:123456789/21215
Acceso en línea:
https://repositorio.unimagdalena.edu.co/handle/123456789/21215
Palabra clave:
Multimodal, Machine Learning, Data Fusion, Deep Learning.
Multimodalidad, Aprendizaje de máquinas, Fusión de datos, Aprendizaje profundo.
Rights
openAccess
License
Acceso Abierto
id UNIMAGDALE_c117eeb271af41a8cc250b22f92c3520
oai_identifier_str oai:repositorio.unimagdalena.edu.co:123456789/21215
network_acronym_str UNIMAGDALE
network_name_str Repositorio Unimagdalena
repository_id_str
dc.title.spa.fl_str_mv Exploration of a ViT-based multimodal approach to Vehicle Accident Detection
dc.title.alternative.none.fl_str_mv Exploración de un enfoque multimodal basado en ViT para la Detección de Accidentes Vehiculares
title Exploration of a ViT-based multimodal approach to Vehicle Accident Detection
spellingShingle Exploration of a ViT-based multimodal approach to Vehicle Accident Detection
Multimodal, Machine Learning, Data Fusion, Deep Learning.
Multimodalidad, Aprendizaje de máquinas, Fusión de datos, Aprendizaje profundo.
title_short Exploration of a ViT-based multimodal approach to Vehicle Accident Detection
title_full Exploration of a ViT-based multimodal approach to Vehicle Accident Detection
title_fullStr Exploration of a ViT-based multimodal approach to Vehicle Accident Detection
title_full_unstemmed Exploration of a ViT-based multimodal approach to Vehicle Accident Detection
title_sort Exploration of a ViT-based multimodal approach to Vehicle Accident Detection
dc.creator.fl_str_mv Ríos Pérez, Jesús David
dc.contributor.advisor.none.fl_str_mv Sánchez Torres, Germán
Henriquez Miranda, Carlos Nelson
dc.contributor.author.none.fl_str_mv Ríos Pérez, Jesús David
dc.contributor.sponsor.spa.fl_str_mv Grupo de investigación y Desarrollo en Sistemas y Computación (GIDSYC)
dc.subject.proposal.spa.fl_str_mv Multimodal, Machine Learning, Data Fusion, Deep Learning.
Multimodalidad, Aprendizaje de máquinas, Fusión de datos, Aprendizaje profundo.
topic Multimodal, Machine Learning, Data Fusion, Deep Learning.
Multimodalidad, Aprendizaje de máquinas, Fusión de datos, Aprendizaje profundo.
description Multimodal Deep Learning (MMDL) has emerged as a potent framework for synthesizing information from diverse data sources, enhancing the capability of models to understand and predict complex phenomena. Particularly, Vision Transformers (ViT) have shown promising results in processing visual data alongside other modalities for comprehensive analysis. This study aims to investigate the integration of MMDL and ViT in the context of traffic accident detection, addressing the critical need for advanced predictive models in this domain. Through a literature review, we assess the current landscape of MMDL applications, and highlight the evolution and challenges of multimodal learning. Building on these insights, we propose a novel MMDL architecture designed to leverage video, audio, and metadata for accurate and timely accident detection. Our methodology combines a structured review of recent MMDL research with a theoretical approach to architecture design, emphasizing the fusion of multimodal data through ViT. The review adheres to established guidelines for systematic reviews, focusing on advancements from 2019 to 2023, while the architecture design is grounded in a thorough analysis of modalities relevant to traffic incidents. The main contributions include a taxonomy of MMDL methods and a ViT-based architecture for enhancing traffic safety systems. Integrating multimodal data through advanced deep learning models can improves the prediction accuracy of traffic accident detection. This research underscores the potential of MMDL and ViT in developing robust, real-time monitoring systems, marking a step forward in the application of artificial intelligence for public safety and smart city initiatives.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-11T13:43:30Z
dc.date.available.none.fl_str_mv 2024-07-11T13:43:30Z
dc.date.issued.none.fl_str_mv 2024
dc.date.submitted.none.fl_str_mv 2024
dc.type.spa.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv https://vocabularies.coar-repositories.org/resource_types/c_7a1f/
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado de Pregrado
format https://vocabularies.coar-repositories.org/resource_types/c_7a1f/
dc.identifier.uri.none.fl_str_mv https://repositorio.unimagdalena.edu.co/handle/123456789/21215
url https://repositorio.unimagdalena.edu.co/handle/123456789/21215
dc.language.iso.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv Acceso Abierto
info:eu-repo/semantics/openAccess
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.cc.spa.fl_str_mv Acceso Abierto
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.creativecommons.spa.fl_str_mv atribucionnocomercialcompartir
rights_invalid_str_mv Acceso Abierto
https://creativecommons.org/licenses/by-nc-sa/4.0/
atribucionnocomercialcompartir
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text
dc.publisher.none.fl_str_mv Universidad del Magdalena
dc.publisher.spa.fl_str_mv Universidad del Magdalena
dc.publisher.department.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.program.spa.fl_str_mv Ingeniería de Sistemas
dc.publisher.place.spa.fl_str_mv Santa Marta
publisher.none.fl_str_mv Universidad del Magdalena
institution Universidad del Magdalena
bitstream.url.fl_str_mv http://localhost:4000/bitstreams/22c6baa0-56cd-4bb7-a9cc-d52044820d9c/download
http://localhost:4000/bitstreams/89856b75-2e7a-4d0e-aa14-9eb0039fb813/download
http://localhost:4000/bitstreams/72e9e210-fbac-4e2d-9c39-e529cb3f88ff/download
bitstream.checksum.fl_str_mv 6742e99f1bfa1457ec7e607813b4ddee
55a0e8f56af35c7d44385ed7d87efd81
03de826a7ba30b30f95ba9233c6ed790
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace Started with Docker Compose
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1855544909342179328
spelling Sánchez Torres, GermánHenriquez Miranda, Carlos NelsonRíos Pérez, Jesús DavidIngeniero (a) de SistemasGrupo de investigación y Desarrollo en Sistemas y Computación (GIDSYC)2024-07-11T13:43:30Z2024-07-11T13:43:30Z20242024https://repositorio.unimagdalena.edu.co/handle/123456789/21215Multimodal Deep Learning (MMDL) has emerged as a potent framework for synthesizing information from diverse data sources, enhancing the capability of models to understand and predict complex phenomena. Particularly, Vision Transformers (ViT) have shown promising results in processing visual data alongside other modalities for comprehensive analysis. This study aims to investigate the integration of MMDL and ViT in the context of traffic accident detection, addressing the critical need for advanced predictive models in this domain. Through a literature review, we assess the current landscape of MMDL applications, and highlight the evolution and challenges of multimodal learning. Building on these insights, we propose a novel MMDL architecture designed to leverage video, audio, and metadata for accurate and timely accident detection. Our methodology combines a structured review of recent MMDL research with a theoretical approach to architecture design, emphasizing the fusion of multimodal data through ViT. The review adheres to established guidelines for systematic reviews, focusing on advancements from 2019 to 2023, while the architecture design is grounded in a thorough analysis of modalities relevant to traffic incidents. The main contributions include a taxonomy of MMDL methods and a ViT-based architecture for enhancing traffic safety systems. Integrating multimodal data through advanced deep learning models can improves the prediction accuracy of traffic accident detection. This research underscores the potential of MMDL and ViT in developing robust, real-time monitoring systems, marking a step forward in the application of artificial intelligence for public safety and smart city initiatives.textUniversidad del MagdalenaUniversidad del MagdalenaFacultad de IngenieríaIngeniería de SistemasSanta MartaAcceso Abiertoinfo:eu-repo/semantics/openAccessAcceso Abiertoinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/atribucionnocomercialcompartirhttp://purl.org/coar/access_right/c_abf2Exploration of a ViT-based multimodal approach to Vehicle Accident DetectionExploración de un enfoque multimodal basado en ViT para la Detección de Accidentes VehicularesbachelorThesishttps://vocabularies.coar-repositories.org/resource_types/c_7a1f/http://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisTrabajo de Grado de PregradoMultimodal, Machine Learning, Data Fusion, Deep Learning.Multimodalidad, Aprendizaje de máquinas, Fusión de datos, Aprendizaje profundo.engPregradoORIGINALExploration of a ViT-based multimodal approach.pdfExploration of a ViT-based multimodal approach.pdfMultimodal Deep Learning (MMDL) has emerged as a potent framework for synthesizing information from diverse data sources, enhancing the capability of models to understand and predict complex phenomena. Particularly, Vision Transformers (ViT) have shown promising results in processing visual data alongside other modalities for comprehensive analysis. This study aims to investigate the integration of MMDL and ViT in the context of traffic accident detection, addressing the critical need for advanced predictive models in this domain. Through a literature review, we assess the current landscape of MMDL applications, and highlight the evolution and challenges of multimodal learning. Building on these insights, we propose a novel MMDL architecture designed to leverage video, audio, and metadata for accurate and timely accident detection. Our methodology combines a structured review of recent MMDL research with a theoretical approach to architecture design, emphasizing the fusion of multimodal data through ViT. The review adheres to established guidelines for systematic reviews, focusing on advancements from 2019 to 2023, while the architecture design is grounded in a thorough analysis of modalities relevant to traffic incidents. The main contributions include a taxonomy of MMDL methods and a ViT-based architecture for enhancing traffic safety systems. Integrating multimodal data through advanced deep learning models can improves the prediction accuracy of traffic accident detection. This research underscores the potential of MMDL and ViT in developing robust, real-time monitoring systems, marking a step forward in the application of artificial intelligence for public safety and smart city initiatives.application/pdf1872021http://localhost:4000/bitstreams/22c6baa0-56cd-4bb7-a9cc-d52044820d9c/download6742e99f1bfa1457ec7e607813b4ddeeMD51trueAnonymousREADBI_F12_Formato_Licencia_Publicacion_Trabajos_Grado jesus.pdfBI_F12_Formato_Licencia_Publicacion_Trabajos_Grado jesus.pdfapplication/pdf549657http://localhost:4000/bitstreams/89856b75-2e7a-4d0e-aa14-9eb0039fb813/download55a0e8f56af35c7d44385ed7d87efd81MD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-82484http://localhost:4000/bitstreams/72e9e210-fbac-4e2d-9c39-e529cb3f88ff/download03de826a7ba30b30f95ba9233c6ed790MD52falseAnonymousREAD123456789/21215oai:localhost:123456789/212152024-11-22 07:27:57.468open.accesshttp://localhost:4000DSpace Started with Docker Composedspace-help@myu.edu