Diseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.

En este trabajo de investigación se presenta la implementación de un sistema inteligente de visión por computadora para detectar rasgos de somnolencia en una población especifica dentro de un contexto de productividad de una organización pública o privada. Este prototipo cuenta con la ventaja de no...

Full description

Autores:
Charris Castrillón, Sebastián Manuel
Sabogal Peralta , Samuel Andrés
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Magdalena
Repositorio:
Repositorio Unimagdalena
Idioma:
spa
eng
OAI Identifier:
oai:repositorio.unimagdalena.edu.co:123456789/8910
Acceso en línea:
https://repositorio.unimagdalena.edu.co/handle/123456789/8910
Palabra clave:
Somnolencia
Salud ocupacional
Redes neuronales convolucionales
Transferencia de aprendizaje
Visión por computador
Rights
openAccess
License
Acceso Abierto
id UNIMAGDALE_42900eb2439514e137daed948d966c25
oai_identifier_str oai:repositorio.unimagdalena.edu.co:123456789/8910
network_acronym_str UNIMAGDALE
network_name_str Repositorio Unimagdalena
repository_id_str
dc.title.none.fl_str_mv Diseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.
title Diseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.
spellingShingle Diseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.
Somnolencia
Salud ocupacional
Redes neuronales convolucionales
Transferencia de aprendizaje
Visión por computador
title_short Diseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.
title_full Diseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.
title_fullStr Diseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.
title_full_unstemmed Diseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.
title_sort Diseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.
dc.creator.fl_str_mv Charris Castrillón, Sebastián Manuel
Sabogal Peralta , Samuel Andrés
dc.contributor.advisor.none.fl_str_mv Rodríguez Álvarez, Omar Francisco
Polo Llanos, Aura Margarita
dc.contributor.author.none.fl_str_mv Charris Castrillón, Sebastián Manuel
Sabogal Peralta , Samuel Andrés
dc.contributor.sponsor.none.fl_str_mv Convocatoria para apoyar el desarrollo de trabajos de grado en programas de pregrado 2018 - Vicerrectoria de investigacion, Universidad del Magdalena.
dc.subject.none.fl_str_mv Somnolencia
Salud ocupacional
Redes neuronales convolucionales
Transferencia de aprendizaje
Visión por computador
topic Somnolencia
Salud ocupacional
Redes neuronales convolucionales
Transferencia de aprendizaje
Visión por computador
description En este trabajo de investigación se presenta la implementación de un sistema inteligente de visión por computadora para detectar rasgos de somnolencia en una población especifica dentro de un contexto de productividad de una organización pública o privada. Este prototipo cuenta con la ventaja de no ser invasivo al cuerpo y estructuralmente está construido con componentes de fácil implementación, como una placa raspberry, una cámara digital y una alarma audible, pero con un gran poder de procesamiento. Durante el desarrollo del dispositivo, se optó por comparar dos métodos para determinar la existencia de la fatiga ocular, el primer método parte de un dataset llamado “yawn_eye_dataset_new” tomado de la base de datos de imágenes de kaggle, este contine 726 imágenes para la clase ‘Ojo Abierto’ y 726 imágenes para la clase ‘Ojo Cerrado’, del cual se dividió el 70% de datos para entrenamiento y el 30% para validación. Mediante estos datos se construyó un modelo de red neuronal convolucional de la mano de la metodología de transferencia de aprendizaje para clasificar el estado del ojo y obtener un índice de somnolencia, para evaluar el rendimiento del modelo entrenado se optó por elaborar un set de prueba que contiene 18 imágenes para cada clase. El segundo método, utiliza el modelo de malla facial para obtener la posición del ojo y a su vez usa la relación de aspecto del ojo (Eye Aspect Rate) para medir la distancia que hay en la apertura del globo ocular y de este modo generar un valor medible de somnolencia. Finalmente, el primer método arroja una exactitud del 69% en la predicción y un error del 31%, un porcentaje muy alto para la predicción de un modelo. En cambio, el segundo método presenta un 76% de exactitud en medición del EAR y un error considerablemente bajo del 24%, en comparación con el método uno. En conclusión, el método dos demuestra una mejora en el nivel exactitud y en la disminución del porcentaje de error con respecto al primer modelo desarrollado, porque el EAR acompañado del modelo de malla facial 3D es una manera eficiente de estimar la existencia de la fatiga ocular.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-30T14:15:50Z
dc.date.available.none.fl_str_mv 2022-11-30T14:15:50Z
dc.date.issued.none.fl_str_mv 2022
dc.date.submitted.none.fl_str_mv 2022
dc.type.none.fl_str_mv bachelorThesis
researchProposal
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://repositorio.unimagdalena.edu.co/handle/123456789/8910
url https://repositorio.unimagdalena.edu.co/handle/123456789/8910
dc.language.iso.fl_str_mv spa
eng
language spa
eng
dc.rights.none.fl_str_mv Acceso Abierto
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Acceso Abierto
dc.rights.creativecommons.spa.fl_str_mv atribucionnocomercialsinderivar
rights_invalid_str_mv Acceso Abierto
atribucionnocomercialsinderivar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text
picture
dc.publisher.none.fl_str_mv Universidad Del Magdalena
dc.publisher.department.none.fl_str_mv Facultad de Ingeniería
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
publisher.none.fl_str_mv Universidad Del Magdalena
institution Universidad del Magdalena
bitstream.url.fl_str_mv https://repositorio.unimagdalena.edu.co/bitstreams/e4a20961-ed16-48fd-843f-51bf70650f64/download
https://repositorio.unimagdalena.edu.co/bitstreams/db8622b6-89ee-411c-90be-946f3e57f454/download
https://repositorio.unimagdalena.edu.co/bitstreams/80d475b1-8f40-4171-8844-a21421a33f99/download
bitstream.checksum.fl_str_mv abe3c633689b1c3955059435093dd640
32c9c8b3ba8538aa076671fe8e28a2bf
03de826a7ba30b30f95ba9233c6ed790
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UniMagdalena
repository.mail.fl_str_mv repositorio@unimagdalena.edu.co
_version_ 1814126885892784128
spelling Rodríguez Álvarez, Omar FranciscoPolo Llanos, Aura MargaritaCharris Castrillón, Sebastián ManuelSabogal Peralta , Samuel AndrésIngeniero ElectrónicoConvocatoria para apoyar el desarrollo de trabajos de grado en programas de pregrado 2018 - Vicerrectoria de investigacion, Universidad del Magdalena.2022-11-30T14:15:50Z2022-11-30T14:15:50Z20222022En este trabajo de investigación se presenta la implementación de un sistema inteligente de visión por computadora para detectar rasgos de somnolencia en una población especifica dentro de un contexto de productividad de una organización pública o privada. Este prototipo cuenta con la ventaja de no ser invasivo al cuerpo y estructuralmente está construido con componentes de fácil implementación, como una placa raspberry, una cámara digital y una alarma audible, pero con un gran poder de procesamiento. Durante el desarrollo del dispositivo, se optó por comparar dos métodos para determinar la existencia de la fatiga ocular, el primer método parte de un dataset llamado “yawn_eye_dataset_new” tomado de la base de datos de imágenes de kaggle, este contine 726 imágenes para la clase ‘Ojo Abierto’ y 726 imágenes para la clase ‘Ojo Cerrado’, del cual se dividió el 70% de datos para entrenamiento y el 30% para validación. Mediante estos datos se construyó un modelo de red neuronal convolucional de la mano de la metodología de transferencia de aprendizaje para clasificar el estado del ojo y obtener un índice de somnolencia, para evaluar el rendimiento del modelo entrenado se optó por elaborar un set de prueba que contiene 18 imágenes para cada clase. El segundo método, utiliza el modelo de malla facial para obtener la posición del ojo y a su vez usa la relación de aspecto del ojo (Eye Aspect Rate) para medir la distancia que hay en la apertura del globo ocular y de este modo generar un valor medible de somnolencia. Finalmente, el primer método arroja una exactitud del 69% en la predicción y un error del 31%, un porcentaje muy alto para la predicción de un modelo. En cambio, el segundo método presenta un 76% de exactitud en medición del EAR y un error considerablemente bajo del 24%, en comparación con el método uno. En conclusión, el método dos demuestra una mejora en el nivel exactitud y en la disminución del porcentaje de error con respecto al primer modelo desarrollado, porque el EAR acompañado del modelo de malla facial 3D es una manera eficiente de estimar la existencia de la fatiga ocular.Submitted by SEBASTIAN MANUEL CHARRIS CASTRILLON (sebastiancharrismc@unimagdalena.edu.co) on 2022-11-29T22:07:33Z workflow start=Step: reviewstep - action:claimaction No. of bitstreams: 2 BI-F12 - Formato de Licencia de Publicación de Trabajos de Grado.pdf: 475598 bytes, checksum: abe3c633689b1c3955059435093dd640 (MD5) Informe Final de trabajo de investigacion.pdf: 1704663 bytes, checksum: 32c9c8b3ba8538aa076671fe8e28a2bf (MD5)Step: reviewstep - action:reviewaction Approved for entry into archive by Ingenieria Electronica(ingelectronica@unimagdalena.edu.co) on 2022-11-30T13:45:44Z (GMT)Step: editstep - action:editaction Approved for entry into archive by Mirlis Bravo(mbravo@unimagdalena.edu.co) on 2022-11-30T14:15:50Z (GMT)Made available in DSpace on 2022-11-30T14:15:50Z (GMT). No. of bitstreams: 2 BI-F12 - Formato de Licencia de Publicación de Trabajos de Grado.pdf: 475598 bytes, checksum: abe3c633689b1c3955059435093dd640 (MD5) Informe Final de trabajo de investigacion.pdf: 1704663 bytes, checksum: 32c9c8b3ba8538aa076671fe8e28a2bf (MD5) Previous issue date: 2022textpicturehttps://repositorio.unimagdalena.edu.co/handle/123456789/8910spaengUniversidad Del MagdalenaFacultad de IngenieríaIngeniería ElectrónicaAcceso Abiertoinfo:eu-repo/semantics/openAccessAcceso Abiertoatribucionnocomercialsinderivarhttp://purl.org/coar/access_right/c_abf2SomnolenciaSalud ocupacionalRedes neuronales convolucionalesTransferencia de aprendizajeVisión por computadorDiseño e implementación de un sistema de alerta temprana para la detección de Somnolencia aplicado en distintos entornos ocupacionales basado en inteligencia artificial y visión por computadora.bachelorThesisresearchProposalhttp://purl.org/coar/resource_type/c_7a1fORIGINALBI-F12 - Formato de Licencia de Publicación de Trabajos de Grado.pdfBI-F12 - Formato de Licencia de Publicación de Trabajos de Grado.pdfRestringidaapplication/pdf475598https://repositorio.unimagdalena.edu.co/bitstreams/e4a20961-ed16-48fd-843f-51bf70650f64/downloadabe3c633689b1c3955059435093dd640MD51Informe Final de trabajo de investigacion.pdfInforme Final de trabajo de investigacion.pdfapplication/pdf1704663https://repositorio.unimagdalena.edu.co/bitstreams/db8622b6-89ee-411c-90be-946f3e57f454/download32c9c8b3ba8538aa076671fe8e28a2bfMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82484https://repositorio.unimagdalena.edu.co/bitstreams/80d475b1-8f40-4171-8844-a21421a33f99/download03de826a7ba30b30f95ba9233c6ed790MD53123456789/8910oai:repositorio.unimagdalena.edu.co:123456789/89102024-10-02 21:14:02.71https://repositorio.unimagdalena.edu.coRepositorio Institucional UniMagdalenarepositorio@unimagdalena.edu.coTElDRU5DSUEgREUgUFVCTElDQUNJw5NOIERFIFJFR0lTVFJPIAogPGJyLz4KRUwgQVVUT1IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBQQVLDgUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gCiA8YnIvPgpFTCBBVVRPUiwgYXV0b3JpemEgYSBMQSBVTklWRVJTSURBRCBERUwgTUFHREFMRU5BLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBsZXkgMjMgZGUgMTk4MiwgbGV5IDQ0IGRlIDE5OTMsIGRlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCBsYSBwdWJsaWNhY2nDs24gZGUgbG9zIG1ldGFkYXRvcyBhcXXDrSByZWdpc3RyYWRvcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIGUgaW52ZXN0aWdhdGl2b3MuIEVuIGZ1bmNpw7NuIGRlIGxvIGN1YWwsIGFsIGZpcm1hciB5IGVudmlhciBlc3RhIGxpY2VuY2lhLCBFTCBBVVRPUiBvdG9yZ2EgYSBMQSBVTklWRVJTSURBRCBERUwgTUFHREFMRU5BIGVsIGRlcmVjaG8gTk8gRVhDTFVTSVZPIGRlIGFsbWFjZW5hciwgcmVwcm9kdWNpciwgdHJhZHVjaXIgeSBkaXZ1bGdhciBsb3MgbWV0YWRhdG9zIGFxdcOtIHJlZ2lzdHJhZG9zIGVuIGZvcm1hdG8gaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdXllbmRvLCBwZXJvIG5vIGxpbWl0YWRvIGEgYXVkaW8gbyB2w61kZW87IHkgYWNlcHRhIHF1ZSBsYSBVTklWRVJTSURBRCBERUwgTUFHREFMRU5BIHB1ZWRlLCBTSU4gTU9ESUZJQ0FSIEVMIENPTlRFTklETyB5IFJFU1BFVEFOVE8gTE9TIERFUkVDSE9TIE1PUkFMRVMsIGRpc3BvbmVyIGRlIGxhIHJlY3VwZXJhY2nDs24gZGUgaW5mb3JtYWNpw7NuIHBvciBwYXJ0ZSBkZSBjb3NlY2hhZG9yZXMgZGUgaW5mb3JtYWNpw7NuIGF2YWxhZG9zIHBvciBsYSBVTlZJRVJTSURBRCBERUwgTUFHREFMRU5BIHkgcXVlIGVzdG9zIG1ldGFkYXRvcyBzZWFuIHJlY3VwZXJhYmxlcyB5IGFjY2VzaWJsZXMgY29uIGZpbmVzIGFjYWTDqW1pY29zIGUgaW52ZXN0aWdhdGl2b3MuIExvIGFudGVyaW9yLCBTSU4gUVVFIEVTVE8gQ09OTExFVkUgQSBRVUUgTEEgVU5JVkVSU0lEQUQgRVNUw4kgT0JMSUdBREEgQSBCUklOREFSIENPTVBFTlNBU0nDk04gTU9ORVRBUklBIEFMIEFVVE9SIHBvciBhY3RpdmlkYWRlcyBkZSBkaXZ1bGdhY2nDs24geSBsb3MgcG9zaWJsZXMgYmVuZWZpY2lvcyBlY29uw7NtaWNvcyBxdWUgZXN0YSBkaXZ1bGdhY2nDs24gcHVlZGEgZ2VuZXJhciBwYXJhIGxhIHVuaXZlcnNpZGFkLiA8YnIvPgotLS0tLS0tLS0tICAKPGJyLz4gClBPTMONVElDQSBERSBUUkFUQU1JRU5UTyBERSBEQVRPUyBQRVJTT05BTEVTLiAgCiA8YnIvPgpEZWNsYXJvIHF1ZSBhdXRvcml6byBwcmV2aWEgeSBkZSBmb3JtYSBpbmZvcm1hZGEgZWwgdHJhdGFtaWVudG8gZGUgbWlzIGRhdG9zIHBlcnNvbmFsZXMgcG9yIHBhcnRlIGRlIGxhIFVOSVZFUlNJREFEIERFTCBNQUdEQUxFTkEgcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyB5IGVuIGFwbGljYWNpw7NuIGRlIGNvbnZlbmlvcyBjb24gdGVyY2Vyb3MgbyBzZXJ2aWNpb3MgY29uZXhvcyBjb24gYWN0aXZpZGFkZXMgcHJvcGlhcyBkZSBsYSBhY2FkZW1pYSwgY29uIGVzdHJpY3RvcyBjdW1wbGltaWVudG9zIGRlIGxvcyBwcmluY2lwaW9zIGRlIGxleSAxNTgxIGRlIDIwMTIuIERlIGlndWFsIGZvcm1hIGVuIGZ1bmNpw7NuIGRlbCBjb3JyZWN0byBlamVyY2ljaW8gZGUgbWkgZGVyZWNobyBkZSBoYWJlYXMgZGF0YSBwdWVkbyBlbiBjdWFscXVpZXIgbW9tZW50bywgcHJldmlhIGlkZW50aWZpY2FjacOzbiwgc29saWNpdGFyIGxhIGNvbnN1bHRhLCBjb3JyZWNjacOzbiB5IHN1cHJlc2nDs24gZGUgbWlzIGRhdG9zIHBvciBtZWRpbyBkZSBjb211bmljYWNpw7NuIG9maWNpYWwgZGlyaWdpZGEgYSBsYSBVTklWRVJTSURBRCBERUwgTUFHREFMRU5BLiAK