Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
Isocyanide-based multicomponent reactions turn out to be interesting synthetic strategies, with highly valued advantages such as atomic economy, selectivity, among others. Furthermore, Isocyanide-based multicomponent reactions have been shown to generate a wide range of products with significant bio...
- Autores:
-
Camargo-Ayala, Lorena
Polo-Cuadrado, Efraín
Osorio, Edison
Soto-Delgado, Jorge
Duarte, Yorley
Prent-Peñaloza, Luis
Gutiérrez, Margarita
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/3834
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/3834
- Palabra clave:
- Alzheimer's disease
Butyrylcholinesterase inhibitors
IMCR
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNIBAGUE2_f126df6b036482c24d5914a0b54e3cff |
---|---|
oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/3834 |
network_acronym_str |
UNIBAGUE2 |
network_name_str |
Repositorio Universidad de Ibagué |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies |
title |
Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies |
spellingShingle |
Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies Alzheimer's disease Butyrylcholinesterase inhibitors IMCR |
title_short |
Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies |
title_full |
Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies |
title_fullStr |
Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies |
title_full_unstemmed |
Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies |
title_sort |
Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies |
dc.creator.fl_str_mv |
Camargo-Ayala, Lorena Polo-Cuadrado, Efraín Osorio, Edison Soto-Delgado, Jorge Duarte, Yorley Prent-Peñaloza, Luis Gutiérrez, Margarita |
dc.contributor.author.none.fl_str_mv |
Camargo-Ayala, Lorena Polo-Cuadrado, Efraín Osorio, Edison Soto-Delgado, Jorge Duarte, Yorley Prent-Peñaloza, Luis Gutiérrez, Margarita |
dc.subject.proposal.eng.fl_str_mv |
Alzheimer's disease Butyrylcholinesterase inhibitors IMCR |
topic |
Alzheimer's disease Butyrylcholinesterase inhibitors IMCR |
description |
Isocyanide-based multicomponent reactions turn out to be interesting synthetic strategies, with highly valued advantages such as atomic economy, selectivity, among others. Furthermore, Isocyanide-based multicomponent reactions have been shown to generate a wide range of products with significant biological activity. Recently, it has been described that the compounds of the Isocyanide-based multicomponent reactions product could be inhibitors of cholinesterase enzymes, acetylcholinesterase, and butyrylcholinesterase. cholinesterase enzymes have aroused great interest as pharmacological targets in the treatment of Alzheimer's disease, which is a disease that affects millions of people in the world, and its effects become disabling for those who suffer from it since it mainly has consequences on memory and cognitive ability. In this work, using Isocyanide-based multicomponent reactions, we report a series of five new compounds, their characterization, and their potential inhibitory biological activity on acetylcholinesterase and butyrylcholinesterase by spectrophotometric analysis. Our studies revealed that the compounds have moderate inhibitory activities against acetylcholinesterase and butyrylcholinesterase. Interestingly, compounds 7a and 7e showed a higher affinity for butyrylcholinesterase. Particularly compound 7a proved to be the compound with the best activity of this series with an IC50 of 25.91 µM for butyrylcholinesterase, more than 62.22 times selective for butyrylcholinesterase than for acetylcholinesterase. The study of molecular docking and molecular dynamics revealed that the hydrophobic character of these compounds favors the interaction with BChE. The favored interactions for compounds 7a and 7e are with the hydrophobic residues Trp82, Trp231, Val288, Phe329, Thr120. In addition, the molecular electrostatic potential and pharmacokinetic predictions also showed that compounds 7a and 7e have free energy values close to galantamine in the complex with butyrylcholinesterase, among others. These analyzes will allow us in the future to establish some structural modifications that would enable, on this basis, to obtain compounds with better activity against cholinesterase enzymes |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-05-16 |
dc.date.accessioned.none.fl_str_mv |
2023-10-17T20:19:59Z |
dc.date.available.none.fl_str_mv |
2023-10-17T20:19:59Z |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Lorena Camargo-Ayala, Efraín Polo-Cuadrado, Edison Osorio, Jorge Soto-Delgado, Yorley Duarte, Luis Prent-Peñaloza, Margarita Gutiérrez, Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies, Journal of Molecular Structure, Volume 1264, 2022, 133307, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.133307. (https://www.sciencedirect.com/science/article/pii/S0022286022009632) |
dc.identifier.issn.none.fl_str_mv |
00222860 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/3834 |
identifier_str_mv |
Lorena Camargo-Ayala, Efraín Polo-Cuadrado, Edison Osorio, Jorge Soto-Delgado, Yorley Duarte, Luis Prent-Peñaloza, Margarita Gutiérrez, Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies, Journal of Molecular Structure, Volume 1264, 2022, 133307, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.133307. (https://www.sciencedirect.com/science/article/pii/S0022286022009632) 00222860 |
url |
https://hdl.handle.net/20.500.12313/3834 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
10 |
dc.relation.citationissue.none.fl_str_mv |
133307 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
1264 |
dc.relation.ispartofjournal.none.fl_str_mv |
Journal of Molecular Structure |
dc.relation.references.none.fl_str_mv |
I. Ugi, A. Dömling, W. Hörl Multicomponent reactions in organic chemistry Endeavour, 18 (1994), pp. 115-122, 10.1016/S0160-9327(05)80086-9 E. Ruijter, R. Orru Multicomponent reactions in drug discovery and medicinal chemistry Drug Discov. Today Technol., 29 (2018), pp. 1-2, 10.1016/j.ddtec.2018.11.002 A. Shaabani, R. Mohammadian, R. Afshari, S.E. Hooshmand, M.T. Nazeri, S. Javanbakht The status of isocyanide-based multi-component reactions in Iran (2010–2018) Mol. Divers., 252 (25) (2020), pp. 1145-1210, 10.1007/S11030-020-10049-7 I. Ugi, R. Meyr, I Isonitrile Darstellung von isonitrilen aus monosubstituierten formamiden durch wasserabspaltung Chem. Ber., 93 (1960), pp. 239-248, 10.1002/cber.19600930136 I. Ugi, R. Meyr Neue Darstellungsmethode für Isonitrile Angew. Chem., 70 (1958), pp. 702-703, 10.1002/ange.19580702213 B. Banerjee Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles Ultrason. Sonochem., 35 (2017), pp. 15-35, 10.1016/j.ultsonch.2016.10.010 A. Dömling* Recent developments in isocyanide based multicomponent reactions in applied chemistry† Chem. Rev., 106 (2005), pp. 17-89, 10.1021/CR0505728 I. Pachón-Angona, H. Martin, S. Chhor, M.J. Oset-Gasque, B. Refouvelet, J. Marco-Contelles, L. Ismaili Synthesis of new ferulic/lipoic/comenic acid-melatonin hybrids as antioxidants and Nrf2 activators via Ugi reaction Future Med. Chem., 11 (2019), pp. 3097-3108, 10.4155/fmc-2019-0191 M. Ingold, L. Colella, P. Hernández, C. Batthyány, D. Tejedor, A. Puerta, F. García-Tellado, J.M. Padrón, W. Porcal, G.V. López A focused library of no-donor compounds with potent antiproliferative activity based on green multicomponent reactions ChemMedChem, 14 (2019), pp. 1669-1683, 10.1002/cmdc.201900385 E. Avilés, J. Prudhomme, K.G. Le Roch, S.G. Franzblau, K. Chandrasena, A.M.S. Mayer, A.D. Rodríguez Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold Bioorganic Med. Chem. Lett., 25 (2015), pp. 5339-5343, 10.1016/j.bmcl.2015.09.033 A.H. Rezayan, S. Hariri, P. Azerang, G. Ghavami, I. Portugal, S. Sardari Synthesis of novel fluorene bisamide derivatives via ugi reaction and evaluation their biological activity against mycobacterium species Iran. J. Pharm. Res. IJPR., 16 (2017), p. 745 L. Prent-Peñaloza, A.F. De La Torre, J.L. Velázquez-Libera, M. Gutiérrez, J. Caballero Synthesis of DiN-substituted glycyl-phenylalanine derivatives by using Ugi four component reaction and their potential as acetylcholinesterase inhibitors Molecules (2019), p. 24, 10.3390/molecules24010189 N. Cankařová, V. Krchňák Isocyanide multicomponent reactions on solid phase: state of the art and future application Int. J. Mol. Sci., 21 (2020), pp. 1-48, 10.3390/IJMS21239160 R. Munir, M. Zia-ur-Rehman, S. Murtaza, S. Zaib, N. Javid, S.J. Awan, K. Iftikhar, M.M. Athar, I. Khan Microwave-assisted synthesis of (piperidin-1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as potent inhibitors of cholinesterases: a biochemical and in silico approach Molecules, 26 (2021), p. 656, 10.3390/molecules26030656 Z. Breijyeh, R. Karaman Comprehensive review on alzheimer's disease: causes and treatment Molecules (2020), p. 25, 10.3390/MOLECULES25245789 D. Munoz-Torrero Acetylcholinesterase inhibitors as disease-modifying therapies for alzheimers disease Curr. Med. Chem., 15 (2008), pp. 2433-2455, 10.2174/092986708785909067 R.T. Bartus, R.L. Dean, B. Beer, A.S. Lippa The cholinergic hypothesis of geriatric memory dysfunction Science (80-.), 217 (1982), pp. 408-417, 10.1126/science.7046051 T. Zhao, K.M. Ding, L. Zhang, X.M. Cheng, C.H. Wang, Z.T. Wang Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β -carboline and quinoline alkaloids derivatives from the plants of genus peganum J. Chem. (2013), p. 2013, 10.1155/2013/717232 N.H. Greig, T. Utsuki, Q. Yu, X. Zhu, H.W. Holloway, T. Perry, B. Lee, D.K. Ingram, D.K. Lahiri A New Therapeutic Target in Alzheimer's Disease Treatment: attention to Butyrylcholinesterase Curr. Med. Res. Opin, 17 (2001), pp. 159-165, 10.1185/0300799039117057 Q. Li, H. Yang, Y. Chen, H. Sun Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease Eur. J. Med. Chem., 132 (2017), pp. 294-309, 10.1016/j.ejmech.2017.03.062 N.H. Greig, T. Utsuki, D.K. Ingram, Y. Wang, G. Pepeu, C. Scali, Q.S. Yu, J. Mamczarz, H.W. Holloway, T. Giordano, D. Chen, K. Furukawa, K. Sambamurti, A. Brossi, D.K. Lahiri Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent Proc. Natl. Acad. Sci. U. S. A., 102 (2005), pp. 17213-17218, 10.1073/pnas.0508575102 P. Brandão, Ó. López, L. Leitzbach, H. Stark, J.G. Fernández-Bolaños, A.J. Burke, M. Pineiro Ugi reaction synthesis of oxindole–lactam hybrids as selective butyrylcholinesterase inhibitors ACS Med. Chem. Lett. (2021), 10.1021/ACSMEDCHEMLETT.1C00344 Schrödinger, D. E. Shaw Research, New York, NY Release 2021-2:, Desmond Molecular Dynamics System 2021 Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY (2021) T. Tubiana, J.C. Carvaillo, Y. Boulard, S. Bressanelli TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries J. Chem. Inf. Model., 58 (2018), pp. 2178-2182, 10.1021/ACS.JCIM.8B00512/SUPPL_FILE/CI8B00512_SI_001.PDF H. Chermette Chemical reactivity indexes in density functional theory J. Comput. Chem., 20 (1999), pp. 129-154, 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A A. Daina, O. Michielin, V. Zoete SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules Sci. Rep., 7 (2017), p. 42717, 10.1038/srep42717 G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone A new and rapid colorimetric determination of acetylcholinesterase activity Biochem. Pharmacol., 7 (1961), pp. 88-95, 10.1016/0006-2952(61)90145-9 H.M. Greenblatt, G. Kryger, T. Lewis, I. Silman, J.L. Sussman Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3Å resolution FEBS Lett, 463 (1999), pp. 321-326, 10.1016/S0014-5793(99)01637-3 F. Nachon, E. Carletti, C. Ronco, M. Trovaslet, Y. Nicolet, L. Jean, P.Y. Renard Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase Biochem. J., 453 (2013), pp. 393-399, 10.1042/BJ20130013 A.D. Becke Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys., 98 (1993), pp. 5648-5652, 10.1063/1.464913 C. Lee, W. Yang, R.G. Parr Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B., 37 (1988), pp. 785-789, 10.1103/PhysRevB.37.785 R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys., 72 (1980), pp. 650-654, 10.1063/1.438955 A.D. McLean, G.S. Chandler Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18 J. Chem. Phys., 72 (1980), pp. 5639-5648, 10.1063/1.438980 G. Frisch, H. Trucks, G. Schlegel, M. Scuseria, J. Robb, J. Cheeseman, T. Montgomery, K. Vreven, J. Kudin, J. Burant, S. Millam, J. Iyengar, V. Tomasi, B. Barone, M. Mennucci, G. Cossi, N. Scalmani, G. Rega, H. Petersson, M. Nakatsuji, M. Hada, K. Ehara, R. Toyota, J. Fukuda, M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda, H. Kitao, M. Nakai, X. Klene, J. Li, H. Knox, J. Hratchian, V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. Gomperts, O. Stratmann, A. Yazyev, R. Austin, C. Cammi, J. Pomelli, P. Ochterski, K. Ayala, G. Morokuma, P. Voth, J. Salvador, V. Dannenberg, S. Zakrzewski, A. Dapprich, M. Daniels, O. Strain, D. Farkas, A. Malick, K. Rabuck, J. Raghavachari, J. Foresman, Q. Ortiz, A. Cui, S. Baboul, J. Clifford, B. Cioslowski, G. Stefanov, A. Liu, P. Liashenko, I. Piskorz, R. Komaromi, D. Martin, T. Fox, A. Keith, C. Laham, A. Peng, M. Nanayakkara, P. Challacombe, B. Gill, W. Johnson, M. Chen, C. Wong, J. Gonzalez Pople, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2009) G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility J. Comput. Chem., 30 (2009), pp. 2785-2791, 10.1002/jcc.21256 G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function J. Comput. Chem., 19 (1998), pp. 1639-1662, 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B W.L. DeLano, The PyMOL molecular graphics system, (2002). http://www.pymol.org. S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme, M. Schroeder PLIP: fully automated protein–ligand interaction profiler Nucleic Acids Res., 43 (2015), pp. W443-W447, 10.1093/NAR/GKV315 M.P. Jacobson, D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw, R.A. Friesner A hierarchical approach to all-atom protein loop prediction Proteins Struct. Funct. Bioinforma., 55 (2004), pp. 351-367, 10.1002/prot.10613 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.place.none.fl_str_mv |
Países Bajos |
dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0022286022009632#cebibl1 |
institution |
Universidad de Ibagué |
bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/a997dbcb-aff9-4b27-ba92-67584408a604/download https://repositorio.unibague.edu.co/bitstreams/fefbbd18-3b6a-485a-b6fc-cdec1ba08378/download https://repositorio.unibague.edu.co/bitstreams/7dccbf08-b5d8-4d4d-a142-244e16b24b4a/download https://repositorio.unibague.edu.co/bitstreams/a4066b52-4e63-4bd7-b3b0-24e9f7586f5b/download |
bitstream.checksum.fl_str_mv |
d16f00ed56d0c85d87c832040769722f d886d7e04091b11c2513a32c4334dad1 2fa3e590786b9c0f3ceba1b9656b7ac3 90a4c3d4df44ce8e8707953a3892dc51 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814204109462437888 |
spelling |
Camargo-Ayala, Lorena41c900ab-b356-4c05-8594-1f10c2d6c414-1Polo-Cuadrado, Efraínf8016ac0-3f43-4599-89b2-3d8e129cb357-1Osorio, Edisone6d834e4-46ca-40f0-ab7c-630a35856901-1Soto-Delgado, Jorge70e6a31a-d113-49de-a9fd-df5b0278031c-1Duarte, Yorley6fcc279c-c6a8-44fc-81b7-5b806866caff-1Prent-Peñaloza, Luis75975bd9-cd4e-48b6-99cd-2cbb8f0b1dd9-1Gutiérrez, Margarita3d6c891b-b6e6-4157-b398-c6ef08538087-12023-10-17T20:19:59Z2023-10-17T20:19:59Z2022-05-16Isocyanide-based multicomponent reactions turn out to be interesting synthetic strategies, with highly valued advantages such as atomic economy, selectivity, among others. Furthermore, Isocyanide-based multicomponent reactions have been shown to generate a wide range of products with significant biological activity. Recently, it has been described that the compounds of the Isocyanide-based multicomponent reactions product could be inhibitors of cholinesterase enzymes, acetylcholinesterase, and butyrylcholinesterase. cholinesterase enzymes have aroused great interest as pharmacological targets in the treatment of Alzheimer's disease, which is a disease that affects millions of people in the world, and its effects become disabling for those who suffer from it since it mainly has consequences on memory and cognitive ability. In this work, using Isocyanide-based multicomponent reactions, we report a series of five new compounds, their characterization, and their potential inhibitory biological activity on acetylcholinesterase and butyrylcholinesterase by spectrophotometric analysis. Our studies revealed that the compounds have moderate inhibitory activities against acetylcholinesterase and butyrylcholinesterase. Interestingly, compounds 7a and 7e showed a higher affinity for butyrylcholinesterase. Particularly compound 7a proved to be the compound with the best activity of this series with an IC50 of 25.91 µM for butyrylcholinesterase, more than 62.22 times selective for butyrylcholinesterase than for acetylcholinesterase. The study of molecular docking and molecular dynamics revealed that the hydrophobic character of these compounds favors the interaction with BChE. The favored interactions for compounds 7a and 7e are with the hydrophobic residues Trp82, Trp231, Val288, Phe329, Thr120. In addition, the molecular electrostatic potential and pharmacokinetic predictions also showed that compounds 7a and 7e have free energy values close to galantamine in the complex with butyrylcholinesterase, among others. These analyzes will allow us in the future to establish some structural modifications that would enable, on this basis, to obtain compounds with better activity against cholinesterase enzymesapplication/pdfLorena Camargo-Ayala, Efraín Polo-Cuadrado, Edison Osorio, Jorge Soto-Delgado, Yorley Duarte, Luis Prent-Peñaloza, Margarita Gutiérrez, Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies, Journal of Molecular Structure, Volume 1264, 2022, 133307, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.133307. (https://www.sciencedirect.com/science/article/pii/S0022286022009632)00222860https://hdl.handle.net/20.500.12313/3834engPaíses Bajos1013330711264Journal of Molecular StructureI. Ugi, A. Dömling, W. Hörl Multicomponent reactions in organic chemistry Endeavour, 18 (1994), pp. 115-122, 10.1016/S0160-9327(05)80086-9E. Ruijter, R. Orru Multicomponent reactions in drug discovery and medicinal chemistry Drug Discov. Today Technol., 29 (2018), pp. 1-2, 10.1016/j.ddtec.2018.11.002A. Shaabani, R. Mohammadian, R. Afshari, S.E. Hooshmand, M.T. Nazeri, S. Javanbakht The status of isocyanide-based multi-component reactions in Iran (2010–2018) Mol. Divers., 252 (25) (2020), pp. 1145-1210, 10.1007/S11030-020-10049-7I. Ugi, R. Meyr, I Isonitrile Darstellung von isonitrilen aus monosubstituierten formamiden durch wasserabspaltung Chem. Ber., 93 (1960), pp. 239-248, 10.1002/cber.19600930136I. Ugi, R. Meyr Neue Darstellungsmethode für Isonitrile Angew. Chem., 70 (1958), pp. 702-703, 10.1002/ange.19580702213B. Banerjee Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles Ultrason. Sonochem., 35 (2017), pp. 15-35, 10.1016/j.ultsonch.2016.10.010A. Dömling* Recent developments in isocyanide based multicomponent reactions in applied chemistry† Chem. Rev., 106 (2005), pp. 17-89, 10.1021/CR0505728I. Pachón-Angona, H. Martin, S. Chhor, M.J. Oset-Gasque, B. Refouvelet, J. Marco-Contelles, L. Ismaili Synthesis of new ferulic/lipoic/comenic acid-melatonin hybrids as antioxidants and Nrf2 activators via Ugi reaction Future Med. Chem., 11 (2019), pp. 3097-3108, 10.4155/fmc-2019-0191M. Ingold, L. Colella, P. Hernández, C. Batthyány, D. Tejedor, A. Puerta, F. García-Tellado, J.M. Padrón, W. Porcal, G.V. López A focused library of no-donor compounds with potent antiproliferative activity based on green multicomponent reactions ChemMedChem, 14 (2019), pp. 1669-1683, 10.1002/cmdc.201900385E. Avilés, J. Prudhomme, K.G. Le Roch, S.G. Franzblau, K. Chandrasena, A.M.S. Mayer, A.D. Rodríguez Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold Bioorganic Med. Chem. Lett., 25 (2015), pp. 5339-5343, 10.1016/j.bmcl.2015.09.033A.H. Rezayan, S. Hariri, P. Azerang, G. Ghavami, I. Portugal, S. Sardari Synthesis of novel fluorene bisamide derivatives via ugi reaction and evaluation their biological activity against mycobacterium species Iran. J. Pharm. Res. IJPR., 16 (2017), p. 745L. Prent-Peñaloza, A.F. De La Torre, J.L. Velázquez-Libera, M. Gutiérrez, J. Caballero Synthesis of DiN-substituted glycyl-phenylalanine derivatives by using Ugi four component reaction and their potential as acetylcholinesterase inhibitors Molecules (2019), p. 24, 10.3390/molecules24010189N. Cankařová, V. Krchňák Isocyanide multicomponent reactions on solid phase: state of the art and future application Int. J. Mol. Sci., 21 (2020), pp. 1-48, 10.3390/IJMS21239160R. Munir, M. Zia-ur-Rehman, S. Murtaza, S. Zaib, N. Javid, S.J. Awan, K. Iftikhar, M.M. Athar, I. Khan Microwave-assisted synthesis of (piperidin-1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as potent inhibitors of cholinesterases: a biochemical and in silico approach Molecules, 26 (2021), p. 656, 10.3390/molecules26030656Z. Breijyeh, R. Karaman Comprehensive review on alzheimer's disease: causes and treatment Molecules (2020), p. 25, 10.3390/MOLECULES25245789D. Munoz-Torrero Acetylcholinesterase inhibitors as disease-modifying therapies for alzheimers disease Curr. Med. Chem., 15 (2008), pp. 2433-2455, 10.2174/092986708785909067R.T. Bartus, R.L. Dean, B. Beer, A.S. Lippa The cholinergic hypothesis of geriatric memory dysfunction Science (80-.), 217 (1982), pp. 408-417, 10.1126/science.7046051T. Zhao, K.M. Ding, L. Zhang, X.M. Cheng, C.H. Wang, Z.T. Wang Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β -carboline and quinoline alkaloids derivatives from the plants of genus peganum J. Chem. (2013), p. 2013, 10.1155/2013/717232N.H. Greig, T. Utsuki, Q. Yu, X. Zhu, H.W. Holloway, T. Perry, B. Lee, D.K. Ingram, D.K. Lahiri A New Therapeutic Target in Alzheimer's Disease Treatment: attention to Butyrylcholinesterase Curr. Med. Res. Opin, 17 (2001), pp. 159-165, 10.1185/0300799039117057Q. Li, H. Yang, Y. Chen, H. Sun Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease Eur. J. Med. Chem., 132 (2017), pp. 294-309, 10.1016/j.ejmech.2017.03.062N.H. Greig, T. Utsuki, D.K. Ingram, Y. Wang, G. Pepeu, C. Scali, Q.S. Yu, J. Mamczarz, H.W. Holloway, T. Giordano, D. Chen, K. Furukawa, K. Sambamurti, A. Brossi, D.K. Lahiri Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent Proc. Natl. Acad. Sci. U. S. A., 102 (2005), pp. 17213-17218, 10.1073/pnas.0508575102P. Brandão, Ó. López, L. Leitzbach, H. Stark, J.G. Fernández-Bolaños, A.J. Burke, M. Pineiro Ugi reaction synthesis of oxindole–lactam hybrids as selective butyrylcholinesterase inhibitors ACS Med. Chem. Lett. (2021), 10.1021/ACSMEDCHEMLETT.1C00344Schrödinger, D. E. Shaw Research, New York, NY Release 2021-2:, Desmond Molecular Dynamics System 2021 Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY (2021)T. Tubiana, J.C. Carvaillo, Y. Boulard, S. Bressanelli TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries J. Chem. Inf. Model., 58 (2018), pp. 2178-2182, 10.1021/ACS.JCIM.8B00512/SUPPL_FILE/CI8B00512_SI_001.PDFH. Chermette Chemical reactivity indexes in density functional theory J. Comput. Chem., 20 (1999), pp. 129-154, 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-AA. Daina, O. Michielin, V. Zoete SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules Sci. Rep., 7 (2017), p. 42717, 10.1038/srep42717G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone A new and rapid colorimetric determination of acetylcholinesterase activity Biochem. Pharmacol., 7 (1961), pp. 88-95, 10.1016/0006-2952(61)90145-9H.M. Greenblatt, G. Kryger, T. Lewis, I. Silman, J.L. Sussman Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3Å resolution FEBS Lett, 463 (1999), pp. 321-326, 10.1016/S0014-5793(99)01637-3F. Nachon, E. Carletti, C. Ronco, M. Trovaslet, Y. Nicolet, L. Jean, P.Y. Renard Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase Biochem. J., 453 (2013), pp. 393-399, 10.1042/BJ20130013A.D. Becke Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys., 98 (1993), pp. 5648-5652, 10.1063/1.464913C. Lee, W. Yang, R.G. Parr Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B., 37 (1988), pp. 785-789, 10.1103/PhysRevB.37.785R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys., 72 (1980), pp. 650-654, 10.1063/1.438955A.D. McLean, G.S. Chandler Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18 J. Chem. Phys., 72 (1980), pp. 5639-5648, 10.1063/1.438980G. Frisch, H. Trucks, G. Schlegel, M. Scuseria, J. Robb, J. Cheeseman, T. Montgomery, K. Vreven, J. Kudin, J. Burant, S. Millam, J. Iyengar, V. Tomasi, B. Barone, M. Mennucci, G. Cossi, N. Scalmani, G. Rega, H. Petersson, M. Nakatsuji, M. Hada, K. Ehara, R. Toyota, J. Fukuda, M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda, H. Kitao, M. Nakai, X. Klene, J. Li, H. Knox, J. Hratchian, V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. Gomperts, O. Stratmann, A. Yazyev, R. Austin, C. Cammi, J. Pomelli, P. Ochterski, K. Ayala, G. Morokuma, P. Voth, J. Salvador, V. Dannenberg, S. Zakrzewski, A. Dapprich, M. Daniels, O. Strain, D. Farkas, A. Malick, K. Rabuck, J. Raghavachari, J. Foresman, Q. Ortiz, A. Cui, S. Baboul, J. Clifford, B. Cioslowski, G. Stefanov, A. Liu, P. Liashenko, I. Piskorz, R. Komaromi, D. Martin, T. Fox, A. Keith, C. Laham, A. Peng, M. Nanayakkara, P. Challacombe, B. Gill, W. Johnson, M. Chen, C. Wong, J. Gonzalez Pople, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2009)G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility J. Comput. Chem., 30 (2009), pp. 2785-2791, 10.1002/jcc.21256G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function J. Comput. Chem., 19 (1998), pp. 1639-1662, 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BW.L. DeLano, The PyMOL molecular graphics system, (2002). http://www.pymol.org.S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme, M. Schroeder PLIP: fully automated protein–ligand interaction profiler Nucleic Acids Res., 43 (2015), pp. W443-W447, 10.1093/NAR/GKV315M.P. Jacobson, D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw, R.A. Friesner A hierarchical approach to all-atom protein loop prediction Proteins Struct. Funct. Bioinforma., 55 (2004), pp. 351-367, 10.1002/prot.10613All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.sciencedirect.com/science/article/pii/S0022286022009632#cebibl1Alzheimer's diseaseButyrylcholinesterase inhibitorsIMCRSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationTEXTSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdf.txtSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdf.txtExtracted texttext/plain5307https://repositorio.unibague.edu.co/bitstreams/a997dbcb-aff9-4b27-ba92-67584408a604/downloadd16f00ed56d0c85d87c832040769722fMD53THUMBNAILSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdf.jpgSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdf.jpgGenerated Thumbnailimage/jpeg13190https://repositorio.unibague.edu.co/bitstreams/fefbbd18-3b6a-485a-b6fc-cdec1ba08378/downloadd886d7e04091b11c2513a32c4334dad1MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/7dccbf08-b5d8-4d4d-a142-244e16b24b4a/download2fa3e590786b9c0f3ceba1b9656b7ac3MD52ORIGINALSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdfSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdfapplication/pdf186728https://repositorio.unibague.edu.co/bitstreams/a4066b52-4e63-4bd7-b3b0-24e9f7586f5b/download90a4c3d4df44ce8e8707953a3892dc51MD5120.500.12313/3834oai:repositorio.unibague.edu.co:20.500.12313/38342023-10-18 03:00:36.742https://creativecommons.org/licenses/by-nc-nd/4.0/All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |