Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies

Isocyanide-based multicomponent reactions turn out to be interesting synthetic strategies, with highly valued advantages such as atomic economy, selectivity, among others. Furthermore, Isocyanide-based multicomponent reactions have been shown to generate a wide range of products with significant bio...

Full description

Autores:
Camargo-Ayala, Lorena
Polo-Cuadrado, Efraín
Osorio, Edison
Soto-Delgado, Jorge
Duarte, Yorley
Prent-Peñaloza, Luis
Gutiérrez, Margarita
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/3834
Acceso en línea:
https://hdl.handle.net/20.500.12313/3834
Palabra clave:
Alzheimer's disease
Butyrylcholinesterase inhibitors
IMCR
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_f126df6b036482c24d5914a0b54e3cff
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/3834
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
title Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
spellingShingle Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
Alzheimer's disease
Butyrylcholinesterase inhibitors
IMCR
title_short Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
title_full Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
title_fullStr Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
title_full_unstemmed Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
title_sort Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies
dc.creator.fl_str_mv Camargo-Ayala, Lorena
Polo-Cuadrado, Efraín
Osorio, Edison
Soto-Delgado, Jorge
Duarte, Yorley
Prent-Peñaloza, Luis
Gutiérrez, Margarita
dc.contributor.author.none.fl_str_mv Camargo-Ayala, Lorena
Polo-Cuadrado, Efraín
Osorio, Edison
Soto-Delgado, Jorge
Duarte, Yorley
Prent-Peñaloza, Luis
Gutiérrez, Margarita
dc.subject.proposal.eng.fl_str_mv Alzheimer's disease
Butyrylcholinesterase inhibitors
IMCR
topic Alzheimer's disease
Butyrylcholinesterase inhibitors
IMCR
description Isocyanide-based multicomponent reactions turn out to be interesting synthetic strategies, with highly valued advantages such as atomic economy, selectivity, among others. Furthermore, Isocyanide-based multicomponent reactions have been shown to generate a wide range of products with significant biological activity. Recently, it has been described that the compounds of the Isocyanide-based multicomponent reactions product could be inhibitors of cholinesterase enzymes, acetylcholinesterase, and butyrylcholinesterase. cholinesterase enzymes have aroused great interest as pharmacological targets in the treatment of Alzheimer's disease, which is a disease that affects millions of people in the world, and its effects become disabling for those who suffer from it since it mainly has consequences on memory and cognitive ability. In this work, using Isocyanide-based multicomponent reactions, we report a series of five new compounds, their characterization, and their potential inhibitory biological activity on acetylcholinesterase and butyrylcholinesterase by spectrophotometric analysis. Our studies revealed that the compounds have moderate inhibitory activities against acetylcholinesterase and butyrylcholinesterase. Interestingly, compounds 7a and 7e showed a higher affinity for butyrylcholinesterase. Particularly compound 7a proved to be the compound with the best activity of this series with an IC50 of 25.91 µM for butyrylcholinesterase, more than 62.22 times selective for butyrylcholinesterase than for acetylcholinesterase. The study of molecular docking and molecular dynamics revealed that the hydrophobic character of these compounds favors the interaction with BChE. The favored interactions for compounds 7a and 7e are with the hydrophobic residues Trp82, Trp231, Val288, Phe329, Thr120. In addition, the molecular electrostatic potential and pharmacokinetic predictions also showed that compounds 7a and 7e have free energy values close to galantamine in the complex with butyrylcholinesterase, among others. These analyzes will allow us in the future to establish some structural modifications that would enable, on this basis, to obtain compounds with better activity against cholinesterase enzymes
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-05-16
dc.date.accessioned.none.fl_str_mv 2023-10-17T20:19:59Z
dc.date.available.none.fl_str_mv 2023-10-17T20:19:59Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Lorena Camargo-Ayala, Efraín Polo-Cuadrado, Edison Osorio, Jorge Soto-Delgado, Yorley Duarte, Luis Prent-Peñaloza, Margarita Gutiérrez, Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies, Journal of Molecular Structure, Volume 1264, 2022, 133307, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.133307. (https://www.sciencedirect.com/science/article/pii/S0022286022009632)
dc.identifier.issn.none.fl_str_mv 00222860
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/3834
identifier_str_mv Lorena Camargo-Ayala, Efraín Polo-Cuadrado, Edison Osorio, Jorge Soto-Delgado, Yorley Duarte, Luis Prent-Peñaloza, Margarita Gutiérrez, Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies, Journal of Molecular Structure, Volume 1264, 2022, 133307, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.133307. (https://www.sciencedirect.com/science/article/pii/S0022286022009632)
00222860
url https://hdl.handle.net/20.500.12313/3834
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 10
dc.relation.citationissue.none.fl_str_mv 133307
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 1264
dc.relation.ispartofjournal.none.fl_str_mv Journal of Molecular Structure
dc.relation.references.none.fl_str_mv I. Ugi, A. Dömling, W. Hörl Multicomponent reactions in organic chemistry Endeavour, 18 (1994), pp. 115-122, 10.1016/S0160-9327(05)80086-9
E. Ruijter, R. Orru Multicomponent reactions in drug discovery and medicinal chemistry Drug Discov. Today Technol., 29 (2018), pp. 1-2, 10.1016/j.ddtec.2018.11.002
A. Shaabani, R. Mohammadian, R. Afshari, S.E. Hooshmand, M.T. Nazeri, S. Javanbakht The status of isocyanide-based multi-component reactions in Iran (2010–2018) Mol. Divers., 252 (25) (2020), pp. 1145-1210, 10.1007/S11030-020-10049-7
I. Ugi, R. Meyr, I Isonitrile Darstellung von isonitrilen aus monosubstituierten formamiden durch wasserabspaltung Chem. Ber., 93 (1960), pp. 239-248, 10.1002/cber.19600930136
I. Ugi, R. Meyr Neue Darstellungsmethode für Isonitrile Angew. Chem., 70 (1958), pp. 702-703, 10.1002/ange.19580702213
B. Banerjee Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles Ultrason. Sonochem., 35 (2017), pp. 15-35, 10.1016/j.ultsonch.2016.10.010
A. Dömling* Recent developments in isocyanide based multicomponent reactions in applied chemistry† Chem. Rev., 106 (2005), pp. 17-89, 10.1021/CR0505728
I. Pachón-Angona, H. Martin, S. Chhor, M.J. Oset-Gasque, B. Refouvelet, J. Marco-Contelles, L. Ismaili Synthesis of new ferulic/lipoic/comenic acid-melatonin hybrids as antioxidants and Nrf2 activators via Ugi reaction Future Med. Chem., 11 (2019), pp. 3097-3108, 10.4155/fmc-2019-0191
M. Ingold, L. Colella, P. Hernández, C. Batthyány, D. Tejedor, A. Puerta, F. García-Tellado, J.M. Padrón, W. Porcal, G.V. López A focused library of no-donor compounds with potent antiproliferative activity based on green multicomponent reactions ChemMedChem, 14 (2019), pp. 1669-1683, 10.1002/cmdc.201900385
E. Avilés, J. Prudhomme, K.G. Le Roch, S.G. Franzblau, K. Chandrasena, A.M.S. Mayer, A.D. Rodríguez Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold Bioorganic Med. Chem. Lett., 25 (2015), pp. 5339-5343, 10.1016/j.bmcl.2015.09.033
A.H. Rezayan, S. Hariri, P. Azerang, G. Ghavami, I. Portugal, S. Sardari Synthesis of novel fluorene bisamide derivatives via ugi reaction and evaluation their biological activity against mycobacterium species Iran. J. Pharm. Res. IJPR., 16 (2017), p. 745
L. Prent-Peñaloza, A.F. De La Torre, J.L. Velázquez-Libera, M. Gutiérrez, J. Caballero Synthesis of DiN-substituted glycyl-phenylalanine derivatives by using Ugi four component reaction and their potential as acetylcholinesterase inhibitors Molecules (2019), p. 24, 10.3390/molecules24010189
N. Cankařová, V. Krchňák Isocyanide multicomponent reactions on solid phase: state of the art and future application Int. J. Mol. Sci., 21 (2020), pp. 1-48, 10.3390/IJMS21239160
R. Munir, M. Zia-ur-Rehman, S. Murtaza, S. Zaib, N. Javid, S.J. Awan, K. Iftikhar, M.M. Athar, I. Khan Microwave-assisted synthesis of (piperidin-1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as potent inhibitors of cholinesterases: a biochemical and in silico approach Molecules, 26 (2021), p. 656, 10.3390/molecules26030656
Z. Breijyeh, R. Karaman Comprehensive review on alzheimer's disease: causes and treatment Molecules (2020), p. 25, 10.3390/MOLECULES25245789
D. Munoz-Torrero Acetylcholinesterase inhibitors as disease-modifying therapies for alzheimers disease Curr. Med. Chem., 15 (2008), pp. 2433-2455, 10.2174/092986708785909067
R.T. Bartus, R.L. Dean, B. Beer, A.S. Lippa The cholinergic hypothesis of geriatric memory dysfunction Science (80-.), 217 (1982), pp. 408-417, 10.1126/science.7046051
T. Zhao, K.M. Ding, L. Zhang, X.M. Cheng, C.H. Wang, Z.T. Wang Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β -carboline and quinoline alkaloids derivatives from the plants of genus peganum J. Chem. (2013), p. 2013, 10.1155/2013/717232
N.H. Greig, T. Utsuki, Q. Yu, X. Zhu, H.W. Holloway, T. Perry, B. Lee, D.K. Ingram, D.K. Lahiri A New Therapeutic Target in Alzheimer's Disease Treatment: attention to Butyrylcholinesterase Curr. Med. Res. Opin, 17 (2001), pp. 159-165, 10.1185/0300799039117057
Q. Li, H. Yang, Y. Chen, H. Sun Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease Eur. J. Med. Chem., 132 (2017), pp. 294-309, 10.1016/j.ejmech.2017.03.062
N.H. Greig, T. Utsuki, D.K. Ingram, Y. Wang, G. Pepeu, C. Scali, Q.S. Yu, J. Mamczarz, H.W. Holloway, T. Giordano, D. Chen, K. Furukawa, K. Sambamurti, A. Brossi, D.K. Lahiri Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent Proc. Natl. Acad. Sci. U. S. A., 102 (2005), pp. 17213-17218, 10.1073/pnas.0508575102
P. Brandão, Ó. López, L. Leitzbach, H. Stark, J.G. Fernández-Bolaños, A.J. Burke, M. Pineiro Ugi reaction synthesis of oxindole–lactam hybrids as selective butyrylcholinesterase inhibitors ACS Med. Chem. Lett. (2021), 10.1021/ACSMEDCHEMLETT.1C00344
Schrödinger, D. E. Shaw Research, New York, NY Release 2021-2:, Desmond Molecular Dynamics System 2021 Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY (2021)
T. Tubiana, J.C. Carvaillo, Y. Boulard, S. Bressanelli TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries J. Chem. Inf. Model., 58 (2018), pp. 2178-2182, 10.1021/ACS.JCIM.8B00512/SUPPL_FILE/CI8B00512_SI_001.PDF
H. Chermette Chemical reactivity indexes in density functional theory J. Comput. Chem., 20 (1999), pp. 129-154, 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
A. Daina, O. Michielin, V. Zoete SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules Sci. Rep., 7 (2017), p. 42717, 10.1038/srep42717
G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone A new and rapid colorimetric determination of acetylcholinesterase activity Biochem. Pharmacol., 7 (1961), pp. 88-95, 10.1016/0006-2952(61)90145-9
H.M. Greenblatt, G. Kryger, T. Lewis, I. Silman, J.L. Sussman Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3Å resolution FEBS Lett, 463 (1999), pp. 321-326, 10.1016/S0014-5793(99)01637-3
F. Nachon, E. Carletti, C. Ronco, M. Trovaslet, Y. Nicolet, L. Jean, P.Y. Renard Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase Biochem. J., 453 (2013), pp. 393-399, 10.1042/BJ20130013
A.D. Becke Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys., 98 (1993), pp. 5648-5652, 10.1063/1.464913
C. Lee, W. Yang, R.G. Parr Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B., 37 (1988), pp. 785-789, 10.1103/PhysRevB.37.785
R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys., 72 (1980), pp. 650-654, 10.1063/1.438955
A.D. McLean, G.S. Chandler Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18 J. Chem. Phys., 72 (1980), pp. 5639-5648, 10.1063/1.438980
G. Frisch, H. Trucks, G. Schlegel, M. Scuseria, J. Robb, J. Cheeseman, T. Montgomery, K. Vreven, J. Kudin, J. Burant, S. Millam, J. Iyengar, V. Tomasi, B. Barone, M. Mennucci, G. Cossi, N. Scalmani, G. Rega, H. Petersson, M. Nakatsuji, M. Hada, K. Ehara, R. Toyota, J. Fukuda, M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda, H. Kitao, M. Nakai, X. Klene, J. Li, H. Knox, J. Hratchian, V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. Gomperts, O. Stratmann, A. Yazyev, R. Austin, C. Cammi, J. Pomelli, P. Ochterski, K. Ayala, G. Morokuma, P. Voth, J. Salvador, V. Dannenberg, S. Zakrzewski, A. Dapprich, M. Daniels, O. Strain, D. Farkas, A. Malick, K. Rabuck, J. Raghavachari, J. Foresman, Q. Ortiz, A. Cui, S. Baboul, J. Clifford, B. Cioslowski, G. Stefanov, A. Liu, P. Liashenko, I. Piskorz, R. Komaromi, D. Martin, T. Fox, A. Keith, C. Laham, A. Peng, M. Nanayakkara, P. Challacombe, B. Gill, W. Johnson, M. Chen, C. Wong, J. Gonzalez Pople, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2009)
G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility J. Comput. Chem., 30 (2009), pp. 2785-2791, 10.1002/jcc.21256
G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function J. Comput. Chem., 19 (1998), pp. 1639-1662, 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
W.L. DeLano, The PyMOL molecular graphics system, (2002). http://www.pymol.org.
S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme, M. Schroeder PLIP: fully automated protein–ligand interaction profiler Nucleic Acids Res., 43 (2015), pp. W443-W447, 10.1093/NAR/GKV315
M.P. Jacobson, D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw, R.A. Friesner A hierarchical approach to all-atom protein loop prediction Proteins Struct. Funct. Bioinforma., 55 (2004), pp. 351-367, 10.1002/prot.10613
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.place.none.fl_str_mv Países Bajos
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0022286022009632#cebibl1
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/a997dbcb-aff9-4b27-ba92-67584408a604/download
https://repositorio.unibague.edu.co/bitstreams/fefbbd18-3b6a-485a-b6fc-cdec1ba08378/download
https://repositorio.unibague.edu.co/bitstreams/7dccbf08-b5d8-4d4d-a142-244e16b24b4a/download
https://repositorio.unibague.edu.co/bitstreams/a4066b52-4e63-4bd7-b3b0-24e9f7586f5b/download
bitstream.checksum.fl_str_mv d16f00ed56d0c85d87c832040769722f
d886d7e04091b11c2513a32c4334dad1
2fa3e590786b9c0f3ceba1b9656b7ac3
90a4c3d4df44ce8e8707953a3892dc51
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808492254890819584
spelling Camargo-Ayala, Lorena41c900ab-b356-4c05-8594-1f10c2d6c414-1Polo-Cuadrado, Efraínf8016ac0-3f43-4599-89b2-3d8e129cb357-1Osorio, Edisone6d834e4-46ca-40f0-ab7c-630a35856901-1Soto-Delgado, Jorge70e6a31a-d113-49de-a9fd-df5b0278031c-1Duarte, Yorley6fcc279c-c6a8-44fc-81b7-5b806866caff-1Prent-Peñaloza, Luis75975bd9-cd4e-48b6-99cd-2cbb8f0b1dd9-1Gutiérrez, Margarita3d6c891b-b6e6-4157-b398-c6ef08538087-12023-10-17T20:19:59Z2023-10-17T20:19:59Z2022-05-16Isocyanide-based multicomponent reactions turn out to be interesting synthetic strategies, with highly valued advantages such as atomic economy, selectivity, among others. Furthermore, Isocyanide-based multicomponent reactions have been shown to generate a wide range of products with significant biological activity. Recently, it has been described that the compounds of the Isocyanide-based multicomponent reactions product could be inhibitors of cholinesterase enzymes, acetylcholinesterase, and butyrylcholinesterase. cholinesterase enzymes have aroused great interest as pharmacological targets in the treatment of Alzheimer's disease, which is a disease that affects millions of people in the world, and its effects become disabling for those who suffer from it since it mainly has consequences on memory and cognitive ability. In this work, using Isocyanide-based multicomponent reactions, we report a series of five new compounds, their characterization, and their potential inhibitory biological activity on acetylcholinesterase and butyrylcholinesterase by spectrophotometric analysis. Our studies revealed that the compounds have moderate inhibitory activities against acetylcholinesterase and butyrylcholinesterase. Interestingly, compounds 7a and 7e showed a higher affinity for butyrylcholinesterase. Particularly compound 7a proved to be the compound with the best activity of this series with an IC50 of 25.91 µM for butyrylcholinesterase, more than 62.22 times selective for butyrylcholinesterase than for acetylcholinesterase. The study of molecular docking and molecular dynamics revealed that the hydrophobic character of these compounds favors the interaction with BChE. The favored interactions for compounds 7a and 7e are with the hydrophobic residues Trp82, Trp231, Val288, Phe329, Thr120. In addition, the molecular electrostatic potential and pharmacokinetic predictions also showed that compounds 7a and 7e have free energy values close to galantamine in the complex with butyrylcholinesterase, among others. These analyzes will allow us in the future to establish some structural modifications that would enable, on this basis, to obtain compounds with better activity against cholinesterase enzymesapplication/pdfLorena Camargo-Ayala, Efraín Polo-Cuadrado, Edison Osorio, Jorge Soto-Delgado, Yorley Duarte, Luis Prent-Peñaloza, Margarita Gutiérrez, Synthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies, Journal of Molecular Structure, Volume 1264, 2022, 133307, ISSN 0022-2860, https://doi.org/10.1016/j.molstruc.2022.133307. (https://www.sciencedirect.com/science/article/pii/S0022286022009632)00222860https://hdl.handle.net/20.500.12313/3834engPaíses Bajos1013330711264Journal of Molecular StructureI. Ugi, A. Dömling, W. Hörl Multicomponent reactions in organic chemistry Endeavour, 18 (1994), pp. 115-122, 10.1016/S0160-9327(05)80086-9E. Ruijter, R. Orru Multicomponent reactions in drug discovery and medicinal chemistry Drug Discov. Today Technol., 29 (2018), pp. 1-2, 10.1016/j.ddtec.2018.11.002A. Shaabani, R. Mohammadian, R. Afshari, S.E. Hooshmand, M.T. Nazeri, S. Javanbakht The status of isocyanide-based multi-component reactions in Iran (2010–2018) Mol. Divers., 252 (25) (2020), pp. 1145-1210, 10.1007/S11030-020-10049-7I. Ugi, R. Meyr, I Isonitrile Darstellung von isonitrilen aus monosubstituierten formamiden durch wasserabspaltung Chem. Ber., 93 (1960), pp. 239-248, 10.1002/cber.19600930136I. Ugi, R. Meyr Neue Darstellungsmethode für Isonitrile Angew. Chem., 70 (1958), pp. 702-703, 10.1002/ange.19580702213B. Banerjee Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles Ultrason. Sonochem., 35 (2017), pp. 15-35, 10.1016/j.ultsonch.2016.10.010A. Dömling* Recent developments in isocyanide based multicomponent reactions in applied chemistry† Chem. Rev., 106 (2005), pp. 17-89, 10.1021/CR0505728I. Pachón-Angona, H. Martin, S. Chhor, M.J. Oset-Gasque, B. Refouvelet, J. Marco-Contelles, L. Ismaili Synthesis of new ferulic/lipoic/comenic acid-melatonin hybrids as antioxidants and Nrf2 activators via Ugi reaction Future Med. Chem., 11 (2019), pp. 3097-3108, 10.4155/fmc-2019-0191M. Ingold, L. Colella, P. Hernández, C. Batthyány, D. Tejedor, A. Puerta, F. García-Tellado, J.M. Padrón, W. Porcal, G.V. López A focused library of no-donor compounds with potent antiproliferative activity based on green multicomponent reactions ChemMedChem, 14 (2019), pp. 1669-1683, 10.1002/cmdc.201900385E. Avilés, J. Prudhomme, K.G. Le Roch, S.G. Franzblau, K. Chandrasena, A.M.S. Mayer, A.D. Rodríguez Synthesis and preliminary biological evaluation of a small library of hybrid compounds based on Ugi isocyanide multicomponent reactions with a marine natural product scaffold Bioorganic Med. Chem. Lett., 25 (2015), pp. 5339-5343, 10.1016/j.bmcl.2015.09.033A.H. Rezayan, S. Hariri, P. Azerang, G. Ghavami, I. Portugal, S. Sardari Synthesis of novel fluorene bisamide derivatives via ugi reaction and evaluation their biological activity against mycobacterium species Iran. J. Pharm. Res. IJPR., 16 (2017), p. 745L. Prent-Peñaloza, A.F. De La Torre, J.L. Velázquez-Libera, M. Gutiérrez, J. Caballero Synthesis of DiN-substituted glycyl-phenylalanine derivatives by using Ugi four component reaction and their potential as acetylcholinesterase inhibitors Molecules (2019), p. 24, 10.3390/molecules24010189N. Cankařová, V. Krchňák Isocyanide multicomponent reactions on solid phase: state of the art and future application Int. J. Mol. Sci., 21 (2020), pp. 1-48, 10.3390/IJMS21239160R. Munir, M. Zia-ur-Rehman, S. Murtaza, S. Zaib, N. Javid, S.J. Awan, K. Iftikhar, M.M. Athar, I. Khan Microwave-assisted synthesis of (piperidin-1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as potent inhibitors of cholinesterases: a biochemical and in silico approach Molecules, 26 (2021), p. 656, 10.3390/molecules26030656Z. Breijyeh, R. Karaman Comprehensive review on alzheimer's disease: causes and treatment Molecules (2020), p. 25, 10.3390/MOLECULES25245789D. Munoz-Torrero Acetylcholinesterase inhibitors as disease-modifying therapies for alzheimers disease Curr. Med. Chem., 15 (2008), pp. 2433-2455, 10.2174/092986708785909067R.T. Bartus, R.L. Dean, B. Beer, A.S. Lippa The cholinergic hypothesis of geriatric memory dysfunction Science (80-.), 217 (1982), pp. 408-417, 10.1126/science.7046051T. Zhao, K.M. Ding, L. Zhang, X.M. Cheng, C.H. Wang, Z.T. Wang Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β -carboline and quinoline alkaloids derivatives from the plants of genus peganum J. Chem. (2013), p. 2013, 10.1155/2013/717232N.H. Greig, T. Utsuki, Q. Yu, X. Zhu, H.W. Holloway, T. Perry, B. Lee, D.K. Ingram, D.K. Lahiri A New Therapeutic Target in Alzheimer's Disease Treatment: attention to Butyrylcholinesterase Curr. Med. Res. Opin, 17 (2001), pp. 159-165, 10.1185/0300799039117057Q. Li, H. Yang, Y. Chen, H. Sun Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease Eur. J. Med. Chem., 132 (2017), pp. 294-309, 10.1016/j.ejmech.2017.03.062N.H. Greig, T. Utsuki, D.K. Ingram, Y. Wang, G. Pepeu, C. Scali, Q.S. Yu, J. Mamczarz, H.W. Holloway, T. Giordano, D. Chen, K. Furukawa, K. Sambamurti, A. Brossi, D.K. Lahiri Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent Proc. Natl. Acad. Sci. U. S. A., 102 (2005), pp. 17213-17218, 10.1073/pnas.0508575102P. Brandão, Ó. López, L. Leitzbach, H. Stark, J.G. Fernández-Bolaños, A.J. Burke, M. Pineiro Ugi reaction synthesis of oxindole–lactam hybrids as selective butyrylcholinesterase inhibitors ACS Med. Chem. Lett. (2021), 10.1021/ACSMEDCHEMLETT.1C00344Schrödinger, D. E. Shaw Research, New York, NY Release 2021-2:, Desmond Molecular Dynamics System 2021 Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY (2021)T. Tubiana, J.C. Carvaillo, Y. Boulard, S. Bressanelli TTClust: a versatile molecular simulation trajectory clustering program with graphical summaries J. Chem. Inf. Model., 58 (2018), pp. 2178-2182, 10.1021/ACS.JCIM.8B00512/SUPPL_FILE/CI8B00512_SI_001.PDFH. Chermette Chemical reactivity indexes in density functional theory J. Comput. Chem., 20 (1999), pp. 129-154, 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-AA. Daina, O. Michielin, V. Zoete SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules Sci. Rep., 7 (2017), p. 42717, 10.1038/srep42717G.L. Ellman, K.D. Courtney, V. Andres, R.M. Featherstone A new and rapid colorimetric determination of acetylcholinesterase activity Biochem. Pharmacol., 7 (1961), pp. 88-95, 10.1016/0006-2952(61)90145-9H.M. Greenblatt, G. Kryger, T. Lewis, I. Silman, J.L. Sussman Structure of acetylcholinesterase complexed with (−)-galanthamine at 2.3Å resolution FEBS Lett, 463 (1999), pp. 321-326, 10.1016/S0014-5793(99)01637-3F. Nachon, E. Carletti, C. Ronco, M. Trovaslet, Y. Nicolet, L. Jean, P.Y. Renard Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase Biochem. J., 453 (2013), pp. 393-399, 10.1042/BJ20130013A.D. Becke Density-functional thermochemistry. III. The role of exact exchange J. Chem. Phys., 98 (1993), pp. 5648-5652, 10.1063/1.464913C. Lee, W. Yang, R.G. Parr Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B., 37 (1988), pp. 785-789, 10.1103/PhysRevB.37.785R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions J. Chem. Phys., 72 (1980), pp. 650-654, 10.1063/1.438955A.D. McLean, G.S. Chandler Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18 J. Chem. Phys., 72 (1980), pp. 5639-5648, 10.1063/1.438980G. Frisch, H. Trucks, G. Schlegel, M. Scuseria, J. Robb, J. Cheeseman, T. Montgomery, K. Vreven, J. Kudin, J. Burant, S. Millam, J. Iyengar, V. Tomasi, B. Barone, M. Mennucci, G. Cossi, N. Scalmani, G. Rega, H. Petersson, M. Nakatsuji, M. Hada, K. Ehara, R. Toyota, J. Fukuda, M. Hasegawa, T. Ishida, Y. Nakajima, O. Honda, H. Kitao, M. Nakai, X. Klene, J. Li, H. Knox, J. Hratchian, V. Cross, C. Bakken, J. Adamo, R. Jaramillo, R. Gomperts, O. Stratmann, A. Yazyev, R. Austin, C. Cammi, J. Pomelli, P. Ochterski, K. Ayala, G. Morokuma, P. Voth, J. Salvador, V. Dannenberg, S. Zakrzewski, A. Dapprich, M. Daniels, O. Strain, D. Farkas, A. Malick, K. Rabuck, J. Raghavachari, J. Foresman, Q. Ortiz, A. Cui, S. Baboul, J. Clifford, B. Cioslowski, G. Stefanov, A. Liu, P. Liashenko, I. Piskorz, R. Komaromi, D. Martin, T. Fox, A. Keith, C. Laham, A. Peng, M. Nanayakkara, P. Challacombe, B. Gill, W. Johnson, M. Chen, C. Wong, J. Gonzalez Pople, Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT (2009)G.M. Morris, H. Ruth, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson Software news and updates AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility J. Comput. Chem., 30 (2009), pp. 2785-2791, 10.1002/jcc.21256G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function J. Comput. Chem., 19 (1998), pp. 1639-1662, 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-BW.L. DeLano, The PyMOL molecular graphics system, (2002). http://www.pymol.org.S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme, M. Schroeder PLIP: fully automated protein–ligand interaction profiler Nucleic Acids Res., 43 (2015), pp. W443-W447, 10.1093/NAR/GKV315M.P. Jacobson, D.L. Pincus, C.S. Rapp, T.J.F. Day, B. Honig, D.E. Shaw, R.A. Friesner A hierarchical approach to all-atom protein loop prediction Proteins Struct. Funct. Bioinforma., 55 (2004), pp. 351-367, 10.1002/prot.10613All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.sciencedirect.com/science/article/pii/S0022286022009632#cebibl1Alzheimer's diseaseButyrylcholinesterase inhibitorsIMCRSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationTEXTSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdf.txtSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdf.txtExtracted texttext/plain5307https://repositorio.unibague.edu.co/bitstreams/a997dbcb-aff9-4b27-ba92-67584408a604/downloadd16f00ed56d0c85d87c832040769722fMD53THUMBNAILSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdf.jpgSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdf.jpgGenerated Thumbnailimage/jpeg13190https://repositorio.unibague.edu.co/bitstreams/fefbbd18-3b6a-485a-b6fc-cdec1ba08378/downloadd886d7e04091b11c2513a32c4334dad1MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/7dccbf08-b5d8-4d4d-a142-244e16b24b4a/download2fa3e590786b9c0f3ceba1b9656b7ac3MD52ORIGINALSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdfSynthesis multicomponent based on o‐tolyl‐isocyanide; cholinesterase inhibitors and computational studies.pdfapplication/pdf186728https://repositorio.unibague.edu.co/bitstreams/a4066b52-4e63-4bd7-b3b0-24e9f7586f5b/download90a4c3d4df44ce8e8707953a3892dc51MD5120.500.12313/3834oai:repositorio.unibague.edu.co:20.500.12313/38342023-10-18 03:00:36.742https://creativecommons.org/licenses/by-nc-nd/4.0/All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=