Chained deep learning using generalized cross-entropy for multiple annotators classification

Supervised learning requires the accurate labeling of instances, usually provided by an expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets when individual annotation is impractical. In addition, these platforms gather labels from multiple labelers. St...

Full description

Autores:
Triana-Martinez, Jenniffer Carolina
Gil-González, Julian
Fernandez-Gallego, Jose A.
Lugo González, Carlos Andrés
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad de Ibagué
Repositorio:
Repositorio Universidad de Ibagué
Idioma:
eng
OAI Identifier:
oai:repositorio.unibague.edu.co:20.500.12313/3837
Acceso en línea:
https://hdl.handle.net/20.500.12313/3837
Palabra clave:
Chained approach
Classification; deep learning
Generalized cross-entropy
Multiple annotators
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UNIBAGUE2_ecf6e2b9ea3d6c8ea0f794896eacc350
oai_identifier_str oai:repositorio.unibague.edu.co:20.500.12313/3837
network_acronym_str UNIBAGUE2
network_name_str Repositorio Universidad de Ibagué
repository_id_str
dc.title.eng.fl_str_mv Chained deep learning using generalized cross-entropy for multiple annotators classification
title Chained deep learning using generalized cross-entropy for multiple annotators classification
spellingShingle Chained deep learning using generalized cross-entropy for multiple annotators classification
Chained approach
Classification; deep learning
Generalized cross-entropy
Multiple annotators
title_short Chained deep learning using generalized cross-entropy for multiple annotators classification
title_full Chained deep learning using generalized cross-entropy for multiple annotators classification
title_fullStr Chained deep learning using generalized cross-entropy for multiple annotators classification
title_full_unstemmed Chained deep learning using generalized cross-entropy for multiple annotators classification
title_sort Chained deep learning using generalized cross-entropy for multiple annotators classification
dc.creator.fl_str_mv Triana-Martinez, Jenniffer Carolina
Gil-González, Julian
Fernandez-Gallego, Jose A.
Lugo González, Carlos Andrés
dc.contributor.author.none.fl_str_mv Triana-Martinez, Jenniffer Carolina
Gil-González, Julian
Fernandez-Gallego, Jose A.
Lugo González, Carlos Andrés
dc.subject.proposal.eng.fl_str_mv Chained approach
Classification; deep learning
Generalized cross-entropy
Multiple annotators
topic Chained approach
Classification; deep learning
Generalized cross-entropy
Multiple annotators
description Supervised learning requires the accurate labeling of instances, usually provided by an expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets when individual annotation is impractical. In addition, these platforms gather labels from multiple labelers. Still, traditional multiple-annotator methods must account for the varying levels of expertise and the noise introduced by unreliable outputs, resulting in decreased performance. In addition, they assume a homogeneous behavior of the labelers across the input feature space, and independence constraints are imposed on outputs. We propose a Generalized Cross-Entropy-based framework using Chained Deep Learning (GCECDL) to code each annotator’s non-stationary patterns regarding the input space while preserving the inter-dependencies among experts through a chained deep learning approach. Experimental results devoted to multiple-annotator classification tasks on several well-known datasets demonstrate that our GCECDL can achieve robust predictive properties, outperforming state-of-the-art algorithms by combining the power of deep learning with a noise-robust loss function to deal with noisy labels. Moreover, network self-regularization is achieved by estimating each labeler’s reliability within the chained approach. Lastly, visual inspection and relevance analysis experiments are conducted to reveal the non-stationary coding of our method. In a nutshell, GCEDL weights reliable labelers as a function of each input sample and achieves suitable discrimination performance with preserved interpretability regarding each annotator’s trustworthiness estimation.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-17T20:44:13Z
dc.date.available.none.fl_str_mv 2023-10-17T20:44:13Z
dc.date.issued.none.fl_str_mv 2023-03-16
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Triana-Martinez, J.C.; Gil-Gonzalez, J.; Fernandez-Gallego, J.A.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G. Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification. Sensors 2023, 23, 3518. https:// doi.org/10.3390/s23073518
dc.identifier.issn.none.fl_str_mv 1424-8220
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12313/3837
identifier_str_mv Triana-Martinez, J.C.; Gil-Gonzalez, J.; Fernandez-Gallego, J.A.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G. Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification. Sensors 2023, 23, 3518. https:// doi.org/10.3390/s23073518
1424-8220
url https://hdl.handle.net/20.500.12313/3837
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 19
dc.relation.citationissue.none.fl_str_mv 3518
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 23
dc.relation.ispartofjournal.none.fl_str_mv Sensors
dc.relation.references.none.fl_str_mv Zhang, J.; Sheng, V.S.; Wu, J. Crowdsourced label aggregation using bilayer collaborative clustering. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3172–3185
Parvat, A.; Chavan, J.; Kadam, S.; Dev, S.; Pathak, V. A survey of deep-learning frameworks. In Proceedings of the 2017 International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017; pp. 1–7
Liu, Y.; Zhang, W.; Yu, Y. Truth inference with a deep clustering-based aggregation model. IEEE Access 2020, 8, 16662–16675
Gil-Gonzalez, J.; Orozco-Gutierrez, A.; Alvarez-Meza, A. Learning from multiple inconsistent and dependent annotators to support classification tasks. Neurocomputing 2021, 423, 236–247
Sung, H.E.; Chen, C.K.; Xiao, H.; Lin, S.D. A Classification Model for Diverse and Noisy Labelers. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2017; pp. 58–69
Yan, Y.; Rosales, R.; Fung, G.; Subramanian, R.; Dy, J. Learning from multiple annotators with varying expertise. Mach. Learn. 2014, 95, 291–327
Xu, G.; Ding, W.; Tang, J.; Yang, S.; Huang, G.Y.; Liu, Z. Learning effective embeddings from crowdsourced labels: An educational case study. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1922–1927
Tanno, R.; Saeedi, A.; Sankaranarayanan, S.; Alexander, D.C.; Silberman, N. Learning from noisy labels by regularized estimation of annotator confusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11244–11253
Davani, A.M.; Díaz, M.; Prabhakaran, V. Dealing with disagreements: Looking beyond the majority vote in subjective annotations. Trans. Assoc. Comput. Linguist. 2022, 10, 92–110
Kara, Y.E.; Genc, G.; Aran, O.; Akarun, L. Modeling annotator behaviors for crowd labeling. Neurocomputing 2015, 160, 141–156
Cao, P.; Xu, Y.; Kong, Y.; Wang, Y. Max-mig: An information theoretic approach for joint learning from crowds. arXiv 2019, arXiv:1905.13436
Chen, Z.; Wang, H.; Sun, H.; Chen, P.; Han, T.; Liu, X.; Yang, J. Structured Probabilistic End-to-End Learning from Crowds. In Proceedings of the IJCAI, Yokohama, Japan, 7–21 January 2021; pp. 1512–1518
Ruiz, P.; Morales-Álvarez, P.; Molina, R.; Katsaggelos, A.K. Learning from crowds with variational Gaussian processes. Pattern Recognit. 2019, 88, 298–311
G. Rodrigo, E.; Aledo, J.A.; Gámez, J.A. Machine learning from crowds: A systematic review of its applications. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1288
Zhang, P.; Obradovic, Z. Learning from inconsistent and unreliable annotators by a gaussian mixture model and bayesian information criterion. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Athens, Greece, 5–9 September 2011; pp. 553–568
Zhang, J. Knowledge learning with crowdsourcing: A brief review and systematic perspective. IEEE/CAA J. Autom. Sin. 2022, 9, 749–762
Zhu, T.; Pimentel, M.A.; Clifford, G.D.; Clifton, D.A. Unsupervised Bayesian inference to fuse biosignal sensory estimates for personalizing care. IEEE J. Biomed. Health Inform. 2018, 23, 47–58
Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.G. Learning from noisy labels with deep neural networks: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2022
Cheng, L.; Zhou, X.; Zhao, L.; Li, D.; Shang, H.; Zheng, Y.; Pan, P.; Xu, Y. Weakly supervised learning with side information for noisy labeled images. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXX 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 306–321
Lee, K.; Yun, S.; Lee, K.; Lee, H.; Li, B.; Shin, J. Robust inference via generative classifiers for handling noisy labels. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 3763–3772
Chen, P.; Liao, B.B.; Chen, G.; Zhang, S. Understanding and utilizing deep neural networks trained with noisy labels. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 1062–1070
Yu, X.; Han, B.; Yao, J.; Niu, G.; Tsang, I.; Sugiyama, M. How does disagreement help generalization against label corruption? In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 7164–7173
Lyu, X.; Wang, J.; Zeng, T.; Li, X.; Chen, J.; Wang, X.; Xu, Z. TSS-Net: Two-stage with sample selection and semi-supervised net for deep learning with noisy labels. In Proceedings of the Third International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI 2022), SPIE, Guangzhou, China, 12–14 August 2022; Volume 12509, pp. 575–584
Shen, Y.; Sanghavi, S. Learning with bad training data via iterative trimmed loss minimization. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 5739–5748
Ghosh, A.; Manwani, N.; Sastry, P. Making risk minimization tolerant to label noise. Neurocomputing 2015, 160, 93–107
Ghosh, A.; Kumar, H.; Sastry, P.S. Robust loss functions under label noise for deep neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31
Albarqouni, S.; Baur, C.; Achilles, F.; Belagiannis, V.; Demirci, S.; Navab, N. Aggnet: Deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1313–1321
Rodrigues, F.; Pereira, F. Deep learning from crowds. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32
Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605
Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847
Rizos, G.; Schuller, B.W. Average jane, where art thou?–recent avenues in efficient machine learning under subjectivity uncertainty. In Proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Lisbon, Portugal, 15–19 June 2020; pp. 42–55
Zhang, J.; Wu, X.; Sheng, V.S. Imbalanced multiple noisy labeling. IEEE Trans. Knowl. Data Eng. 2014, 27, 489–503
Dawid, A.P.; Skene, A.M. Maximum likelihood estimation of observer error-rates using the EM algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 20–28
Raykar, V.C.; Yu, S.; Zhao, L.H.; Valadez, G.H.; Florin, C.; Bogoni, L.; Moy, L. Learning from crowds. J. Mach. Learn. Res. 2010, 11, 1297–1322
Groot, P.; Birlutiu, A.; Heskes, T. Learning from multiple annotators with Gaussian processes. In Proceedings of the International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; pp. 159–164
Xiao, H.; Xiao, H.; Eckert, C. Learning from multiple observers with unknown expertise. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Gold Coast, Australia, 14–17 April 2013; pp. 595–606
Morales-Alvarez, P.; Ruiz, P.; Coughlin, S.; Molina, R.; Katsaggelos, A.K. Scalable variational Gaussian processes for crowdsourcing: Glitch detection in LIGO. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1534–1551
Gil-Gonzalez, J.; Alvarez-Meza, A.; Orozco-Gutierrez, A. Learning from multiple annotators using kernel alignment. Pattern Recognit. Lett. 2018, 116, 150–156
Morales-Álvarez, P.; Ruiz, P.; Santos-Rodríguez, R.; Molina, R.; Katsaggelos, A.K. Scalable and efficient learning from crowds with Gaussian processes. Inf. Fusion 2019, 52, 110–127
Rodrigues, F.; Pereira, F.; Ribeiro, B. Sequence labeling with multiple annotators. Mach. Learn. 2014, 95, 165–181
Wang, X.; Bi, J. Bi-convex optimization to learn classifiers from multiple biomedical annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 14, 564–575
Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 2018, 31, 1–11
Gil-González, J.; Valencia-Duque, A.; Álvarez-Meza, A.; Orozco-Gutiérrez, Á.; García-Moreno, A. Regularized chained deep neural network classifier for multiple annotators. Appl. Sci. 2021, 11, 5409
Zhao, X.; Li, X.; Bi, D.; Wang, H.; Xie, Y.; Alhudhaif, A.; Alenezi, F. L1-norm constraint kernel adaptive filtering framework for precise and robust indoor localization under the internet of things. Inf. Sci. 2022, 587, 206–225
Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–243
Saul, A.; Hensman, J.; Vehtari, A.; Lawrence, N. Chained Gaussian processes. In Proceedings of the Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 1431–1440
Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2019
Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747
Hernández-Muriel, J.A.; Bermeo-Ulloa, J.B.; Holguin-Londoño, M.; Álvarez-Meza, A.M.; Orozco-Gutiérrez, Á.A. Bearing health monitoring using relief-F-based feature relevance analysis and HMM. Appl. Sci. 2020, 10, 5170
LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 1989, 2, 396–404
Dogs vs. Cats—Kaggle.com. Available online: https://www.kaggle.com/c/dogs-vs-cats
Peterson, J.C.; Battleday, R.M.; Griffiths, T.L.; Russakovsky, O. Human uncertainty makes classification more robust. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 9617–9626
Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556
Tzanetakis, G.; Cook, P. Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 2002, 10, 293–302
Rodrigues, F.; Pereira, F.; Ribeiro, B. Learning from multiple annotators: Distinguishing good from random labelers. Pattern Recognit. Lett. 2013, 34, 1428–1436
Gil-Gonzalez, J.; Giraldo, J.J.; Alvarez-Meza, A.; Orozco-Gutierrez, A.; Alvarez, M. Correlated Chained Gaussian Processes for Datasets with Multiple Annotators. IEEE Trans. Neural Netw. Learn. Syst. 2021
MacKay, D.J.; Mac Kay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003
Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30
Li, Z.L.; Zhang, G.W.; Yu, J.; Xu, L.Y. Dynamic Graph Structure Learning for Multivariate Time Series Forecasting. Pattern Recognit. 2023, 138, 109423
Leroux, L.; Castets, M.; Baron, C.; Escorihuela, M.J.; Bégué, A.; Seen, D.L. Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices. Eur. J. Agron. 2019, 108, 11–26
Montavon, G.; Binder, A.; Lapuschkin, S.; Samek, W.; Müller, K.R. Layer-wise relevance propagation: An overview. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer Nature: Cham, Switzerland, 2019; pp. 193–209
Holzinger, A.; Saranti, A.; Molnar, C.; Biecek, P.; Samek, W. Explainable AI methods-a brief overview. In Proceedings of the xxAI-Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, Vienna, Austria, 18 July 2020, Revised and Extended Papers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 13–38
Bennetot, A.; Donadello, I.; Qadi, A.E.; Dragoni, M.; Frossard, T.; Wagner, B.; Saranti, A.; Tulli, S.; Trocan, M.; Chatila, R.; et al. A practical tutorial on explainable ai techniques. arXiv 2021, arXiv:2111.14260
Saranti, A.; Hudec, M.; Mináriková, E.; Takáč, Z.; Großschedl, U.; Koch, C.; Pfeifer, B.; Angerschmid, A.; Holzinger, A. Actionable Explainable AI (AxAI): A Practical Example with Aggregation Functions for Adaptive Classification and Textual Explanations for Interpretable Machine Learning. Mach. Learn. Knowl. Extr. 2022, 4, 924–953
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.place.none.fl_str_mv Suiza
dc.source.none.fl_str_mv https://www.mdpi.com/1424-8220/23/7/3518
institution Universidad de Ibagué
bitstream.url.fl_str_mv https://repositorio.unibague.edu.co/bitstreams/343fa619-0539-4c57-ad8e-45ab38d3bf8a/download
https://repositorio.unibague.edu.co/bitstreams/db8fae63-2707-43ba-b41c-7c59e777a8b6/download
https://repositorio.unibague.edu.co/bitstreams/604c41f9-97e5-4e80-bb6d-a52afc68f8cf/download
https://repositorio.unibague.edu.co/bitstreams/925d93de-99db-4081-91bc-33241a9da344/download
bitstream.checksum.fl_str_mv d65ede29e237496c30d681f816e0d2b6
37ca98a6a0c60da572f0887e96c88d31
92b6934be8dcf1d603890d069bebb92c
2fa3e590786b9c0f3ceba1b9656b7ac3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Ibagué
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814204103319879680
spelling Triana-Martinez, Jenniffer Carolina407c69b2-46f4-42c4-a569-244690587cdb-1Gil-González, Juliand4dc3d5d-c43a-46c7-813c-26d2fb86299b-1Fernandez-Gallego, Jose A.5c39dc3b-5876-4b8c-bceb-1e5bce9dc255-1Lugo González, Carlos Andrésc7c7b0da-c06e-4b1f-8f28-9570765b26246002023-10-17T20:44:13Z2023-10-17T20:44:13Z2023-03-16Supervised learning requires the accurate labeling of instances, usually provided by an expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets when individual annotation is impractical. In addition, these platforms gather labels from multiple labelers. Still, traditional multiple-annotator methods must account for the varying levels of expertise and the noise introduced by unreliable outputs, resulting in decreased performance. In addition, they assume a homogeneous behavior of the labelers across the input feature space, and independence constraints are imposed on outputs. We propose a Generalized Cross-Entropy-based framework using Chained Deep Learning (GCECDL) to code each annotator’s non-stationary patterns regarding the input space while preserving the inter-dependencies among experts through a chained deep learning approach. Experimental results devoted to multiple-annotator classification tasks on several well-known datasets demonstrate that our GCECDL can achieve robust predictive properties, outperforming state-of-the-art algorithms by combining the power of deep learning with a noise-robust loss function to deal with noisy labels. Moreover, network self-regularization is achieved by estimating each labeler’s reliability within the chained approach. Lastly, visual inspection and relevance analysis experiments are conducted to reveal the non-stationary coding of our method. In a nutshell, GCEDL weights reliable labelers as a function of each input sample and achieves suitable discrimination performance with preserved interpretability regarding each annotator’s trustworthiness estimation.application/pdfTriana-Martinez, J.C.; Gil-Gonzalez, J.; Fernandez-Gallego, J.A.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G. Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification. Sensors 2023, 23, 3518. https:// doi.org/10.3390/s230735181424-8220https://hdl.handle.net/20.500.12313/3837engSuiza193518123SensorsZhang, J.; Sheng, V.S.; Wu, J. Crowdsourced label aggregation using bilayer collaborative clustering. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3172–3185Parvat, A.; Chavan, J.; Kadam, S.; Dev, S.; Pathak, V. A survey of deep-learning frameworks. In Proceedings of the 2017 International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017; pp. 1–7Liu, Y.; Zhang, W.; Yu, Y. Truth inference with a deep clustering-based aggregation model. IEEE Access 2020, 8, 16662–16675Gil-Gonzalez, J.; Orozco-Gutierrez, A.; Alvarez-Meza, A. Learning from multiple inconsistent and dependent annotators to support classification tasks. Neurocomputing 2021, 423, 236–247Sung, H.E.; Chen, C.K.; Xiao, H.; Lin, S.D. A Classification Model for Diverse and Noisy Labelers. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2017; pp. 58–69Yan, Y.; Rosales, R.; Fung, G.; Subramanian, R.; Dy, J. Learning from multiple annotators with varying expertise. Mach. Learn. 2014, 95, 291–327Xu, G.; Ding, W.; Tang, J.; Yang, S.; Huang, G.Y.; Liu, Z. Learning effective embeddings from crowdsourced labels: An educational case study. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1922–1927Tanno, R.; Saeedi, A.; Sankaranarayanan, S.; Alexander, D.C.; Silberman, N. Learning from noisy labels by regularized estimation of annotator confusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11244–11253Davani, A.M.; Díaz, M.; Prabhakaran, V. Dealing with disagreements: Looking beyond the majority vote in subjective annotations. Trans. Assoc. Comput. Linguist. 2022, 10, 92–110Kara, Y.E.; Genc, G.; Aran, O.; Akarun, L. Modeling annotator behaviors for crowd labeling. Neurocomputing 2015, 160, 141–156Cao, P.; Xu, Y.; Kong, Y.; Wang, Y. Max-mig: An information theoretic approach for joint learning from crowds. arXiv 2019, arXiv:1905.13436Chen, Z.; Wang, H.; Sun, H.; Chen, P.; Han, T.; Liu, X.; Yang, J. Structured Probabilistic End-to-End Learning from Crowds. In Proceedings of the IJCAI, Yokohama, Japan, 7–21 January 2021; pp. 1512–1518Ruiz, P.; Morales-Álvarez, P.; Molina, R.; Katsaggelos, A.K. Learning from crowds with variational Gaussian processes. Pattern Recognit. 2019, 88, 298–311G. Rodrigo, E.; Aledo, J.A.; Gámez, J.A. Machine learning from crowds: A systematic review of its applications. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1288Zhang, P.; Obradovic, Z. Learning from inconsistent and unreliable annotators by a gaussian mixture model and bayesian information criterion. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Athens, Greece, 5–9 September 2011; pp. 553–568Zhang, J. Knowledge learning with crowdsourcing: A brief review and systematic perspective. IEEE/CAA J. Autom. Sin. 2022, 9, 749–762Zhu, T.; Pimentel, M.A.; Clifford, G.D.; Clifton, D.A. Unsupervised Bayesian inference to fuse biosignal sensory estimates for personalizing care. IEEE J. Biomed. Health Inform. 2018, 23, 47–58Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.G. Learning from noisy labels with deep neural networks: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2022Cheng, L.; Zhou, X.; Zhao, L.; Li, D.; Shang, H.; Zheng, Y.; Pan, P.; Xu, Y. Weakly supervised learning with side information for noisy labeled images. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXX 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 306–321Lee, K.; Yun, S.; Lee, K.; Lee, H.; Li, B.; Shin, J. Robust inference via generative classifiers for handling noisy labels. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 3763–3772Chen, P.; Liao, B.B.; Chen, G.; Zhang, S. Understanding and utilizing deep neural networks trained with noisy labels. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 1062–1070Yu, X.; Han, B.; Yao, J.; Niu, G.; Tsang, I.; Sugiyama, M. How does disagreement help generalization against label corruption? In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 7164–7173Lyu, X.; Wang, J.; Zeng, T.; Li, X.; Chen, J.; Wang, X.; Xu, Z. TSS-Net: Two-stage with sample selection and semi-supervised net for deep learning with noisy labels. In Proceedings of the Third International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI 2022), SPIE, Guangzhou, China, 12–14 August 2022; Volume 12509, pp. 575–584Shen, Y.; Sanghavi, S. Learning with bad training data via iterative trimmed loss minimization. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 5739–5748Ghosh, A.; Manwani, N.; Sastry, P. Making risk minimization tolerant to label noise. Neurocomputing 2015, 160, 93–107Ghosh, A.; Kumar, H.; Sastry, P.S. Robust loss functions under label noise for deep neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31Albarqouni, S.; Baur, C.; Achilles, F.; Belagiannis, V.; Demirci, S.; Navab, N. Aggnet: Deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1313–1321Rodrigues, F.; Pereira, F. Deep learning from crowds. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847Rizos, G.; Schuller, B.W. Average jane, where art thou?–recent avenues in efficient machine learning under subjectivity uncertainty. In Proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Lisbon, Portugal, 15–19 June 2020; pp. 42–55Zhang, J.; Wu, X.; Sheng, V.S. Imbalanced multiple noisy labeling. IEEE Trans. Knowl. Data Eng. 2014, 27, 489–503Dawid, A.P.; Skene, A.M. Maximum likelihood estimation of observer error-rates using the EM algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 20–28Raykar, V.C.; Yu, S.; Zhao, L.H.; Valadez, G.H.; Florin, C.; Bogoni, L.; Moy, L. Learning from crowds. J. Mach. Learn. Res. 2010, 11, 1297–1322Groot, P.; Birlutiu, A.; Heskes, T. Learning from multiple annotators with Gaussian processes. In Proceedings of the International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; pp. 159–164Xiao, H.; Xiao, H.; Eckert, C. Learning from multiple observers with unknown expertise. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Gold Coast, Australia, 14–17 April 2013; pp. 595–606Morales-Alvarez, P.; Ruiz, P.; Coughlin, S.; Molina, R.; Katsaggelos, A.K. Scalable variational Gaussian processes for crowdsourcing: Glitch detection in LIGO. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1534–1551Gil-Gonzalez, J.; Alvarez-Meza, A.; Orozco-Gutierrez, A. Learning from multiple annotators using kernel alignment. Pattern Recognit. Lett. 2018, 116, 150–156Morales-Álvarez, P.; Ruiz, P.; Santos-Rodríguez, R.; Molina, R.; Katsaggelos, A.K. Scalable and efficient learning from crowds with Gaussian processes. Inf. Fusion 2019, 52, 110–127Rodrigues, F.; Pereira, F.; Ribeiro, B. Sequence labeling with multiple annotators. Mach. Learn. 2014, 95, 165–181Wang, X.; Bi, J. Bi-convex optimization to learn classifiers from multiple biomedical annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 14, 564–575Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 2018, 31, 1–11Gil-González, J.; Valencia-Duque, A.; Álvarez-Meza, A.; Orozco-Gutiérrez, Á.; García-Moreno, A. Regularized chained deep neural network classifier for multiple annotators. Appl. Sci. 2021, 11, 5409Zhao, X.; Li, X.; Bi, D.; Wang, H.; Xie, Y.; Alhudhaif, A.; Alenezi, F. L1-norm constraint kernel adaptive filtering framework for precise and robust indoor localization under the internet of things. Inf. Sci. 2022, 587, 206–225Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–243Saul, A.; Hensman, J.; Vehtari, A.; Lawrence, N. Chained Gaussian processes. In Proceedings of the Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 1431–1440Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2019Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747Hernández-Muriel, J.A.; Bermeo-Ulloa, J.B.; Holguin-Londoño, M.; Álvarez-Meza, A.M.; Orozco-Gutiérrez, Á.A. Bearing health monitoring using relief-F-based feature relevance analysis and HMM. Appl. Sci. 2020, 10, 5170LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 1989, 2, 396–404Dogs vs. Cats—Kaggle.com. Available online: https://www.kaggle.com/c/dogs-vs-catsPeterson, J.C.; Battleday, R.M.; Griffiths, T.L.; Russakovsky, O. Human uncertainty makes classification more robust. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 9617–9626Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556Tzanetakis, G.; Cook, P. Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 2002, 10, 293–302Rodrigues, F.; Pereira, F.; Ribeiro, B. Learning from multiple annotators: Distinguishing good from random labelers. Pattern Recognit. Lett. 2013, 34, 1428–1436Gil-Gonzalez, J.; Giraldo, J.J.; Alvarez-Meza, A.; Orozco-Gutierrez, A.; Alvarez, M. Correlated Chained Gaussian Processes for Datasets with Multiple Annotators. IEEE Trans. Neural Netw. Learn. Syst. 2021MacKay, D.J.; Mac Kay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30Li, Z.L.; Zhang, G.W.; Yu, J.; Xu, L.Y. Dynamic Graph Structure Learning for Multivariate Time Series Forecasting. Pattern Recognit. 2023, 138, 109423Leroux, L.; Castets, M.; Baron, C.; Escorihuela, M.J.; Bégué, A.; Seen, D.L. Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices. Eur. J. Agron. 2019, 108, 11–26Montavon, G.; Binder, A.; Lapuschkin, S.; Samek, W.; Müller, K.R. Layer-wise relevance propagation: An overview. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer Nature: Cham, Switzerland, 2019; pp. 193–209Holzinger, A.; Saranti, A.; Molnar, C.; Biecek, P.; Samek, W. Explainable AI methods-a brief overview. In Proceedings of the xxAI-Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, Vienna, Austria, 18 July 2020, Revised and Extended Papers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 13–38Bennetot, A.; Donadello, I.; Qadi, A.E.; Dragoni, M.; Frossard, T.; Wagner, B.; Saranti, A.; Tulli, S.; Trocan, M.; Chatila, R.; et al. A practical tutorial on explainable ai techniques. arXiv 2021, arXiv:2111.14260Saranti, A.; Hudec, M.; Mináriková, E.; Takáč, Z.; Großschedl, U.; Koch, C.; Pfeifer, B.; Angerschmid, A.; Holzinger, A. Actionable Explainable AI (AxAI): A Practical Example with Aggregation Functions for Adaptive Classification and Textual Explanations for Interpretable Machine Learning. Mach. Learn. Knowl. Extr. 2022, 4, 924–953This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.mdpi.com/1424-8220/23/7/3518Chained approachClassification; deep learningGeneralized cross-entropyMultiple annotatorsChained deep learning using generalized cross-entropy for multiple annotators classificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationTEXTChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdf.txtChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdf.txtExtracted texttext/plain4534https://repositorio.unibague.edu.co/bitstreams/343fa619-0539-4c57-ad8e-45ab38d3bf8a/downloadd65ede29e237496c30d681f816e0d2b6MD53THUMBNAILChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdf.jpgChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdf.jpgGenerated Thumbnailimage/jpeg12604https://repositorio.unibague.edu.co/bitstreams/db8fae63-2707-43ba-b41c-7c59e777a8b6/download37ca98a6a0c60da572f0887e96c88d31MD54ORIGINALChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdfChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdfapplication/pdf76349https://repositorio.unibague.edu.co/bitstreams/604c41f9-97e5-4e80-bb6d-a52afc68f8cf/download92b6934be8dcf1d603890d069bebb92cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/925d93de-99db-4081-91bc-33241a9da344/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5220.500.12313/3837oai:repositorio.unibague.edu.co:20.500.12313/38372023-10-18 03:00:34.624https://creativecommons.org/licenses/by-nc-nd/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8=