Chained deep learning using generalized cross-entropy for multiple annotators classification
Supervised learning requires the accurate labeling of instances, usually provided by an expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets when individual annotation is impractical. In addition, these platforms gather labels from multiple labelers. St...
- Autores:
-
Triana-Martinez, Jenniffer Carolina
Gil-González, Julian
Fernandez-Gallego, Jose A.
Lugo González, Carlos Andrés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Ibagué
- Repositorio:
- Repositorio Universidad de Ibagué
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unibague.edu.co:20.500.12313/3837
- Acceso en línea:
- https://hdl.handle.net/20.500.12313/3837
- Palabra clave:
- Chained approach
Classification; deep learning
Generalized cross-entropy
Multiple annotators
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNIBAGUE2_ecf6e2b9ea3d6c8ea0f794896eacc350 |
---|---|
oai_identifier_str |
oai:repositorio.unibague.edu.co:20.500.12313/3837 |
network_acronym_str |
UNIBAGUE2 |
network_name_str |
Repositorio Universidad de Ibagué |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Chained deep learning using generalized cross-entropy for multiple annotators classification |
title |
Chained deep learning using generalized cross-entropy for multiple annotators classification |
spellingShingle |
Chained deep learning using generalized cross-entropy for multiple annotators classification Chained approach Classification; deep learning Generalized cross-entropy Multiple annotators |
title_short |
Chained deep learning using generalized cross-entropy for multiple annotators classification |
title_full |
Chained deep learning using generalized cross-entropy for multiple annotators classification |
title_fullStr |
Chained deep learning using generalized cross-entropy for multiple annotators classification |
title_full_unstemmed |
Chained deep learning using generalized cross-entropy for multiple annotators classification |
title_sort |
Chained deep learning using generalized cross-entropy for multiple annotators classification |
dc.creator.fl_str_mv |
Triana-Martinez, Jenniffer Carolina Gil-González, Julian Fernandez-Gallego, Jose A. Lugo González, Carlos Andrés |
dc.contributor.author.none.fl_str_mv |
Triana-Martinez, Jenniffer Carolina Gil-González, Julian Fernandez-Gallego, Jose A. Lugo González, Carlos Andrés |
dc.subject.proposal.eng.fl_str_mv |
Chained approach Classification; deep learning Generalized cross-entropy Multiple annotators |
topic |
Chained approach Classification; deep learning Generalized cross-entropy Multiple annotators |
description |
Supervised learning requires the accurate labeling of instances, usually provided by an expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets when individual annotation is impractical. In addition, these platforms gather labels from multiple labelers. Still, traditional multiple-annotator methods must account for the varying levels of expertise and the noise introduced by unreliable outputs, resulting in decreased performance. In addition, they assume a homogeneous behavior of the labelers across the input feature space, and independence constraints are imposed on outputs. We propose a Generalized Cross-Entropy-based framework using Chained Deep Learning (GCECDL) to code each annotator’s non-stationary patterns regarding the input space while preserving the inter-dependencies among experts through a chained deep learning approach. Experimental results devoted to multiple-annotator classification tasks on several well-known datasets demonstrate that our GCECDL can achieve robust predictive properties, outperforming state-of-the-art algorithms by combining the power of deep learning with a noise-robust loss function to deal with noisy labels. Moreover, network self-regularization is achieved by estimating each labeler’s reliability within the chained approach. Lastly, visual inspection and relevance analysis experiments are conducted to reveal the non-stationary coding of our method. In a nutshell, GCEDL weights reliable labelers as a function of each input sample and achieves suitable discrimination performance with preserved interpretability regarding each annotator’s trustworthiness estimation. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-10-17T20:44:13Z |
dc.date.available.none.fl_str_mv |
2023-10-17T20:44:13Z |
dc.date.issued.none.fl_str_mv |
2023-03-16 |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Triana-Martinez, J.C.; Gil-Gonzalez, J.; Fernandez-Gallego, J.A.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G. Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification. Sensors 2023, 23, 3518. https:// doi.org/10.3390/s23073518 |
dc.identifier.issn.none.fl_str_mv |
1424-8220 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12313/3837 |
identifier_str_mv |
Triana-Martinez, J.C.; Gil-Gonzalez, J.; Fernandez-Gallego, J.A.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G. Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification. Sensors 2023, 23, 3518. https:// doi.org/10.3390/s23073518 1424-8220 |
url |
https://hdl.handle.net/20.500.12313/3837 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
19 |
dc.relation.citationissue.none.fl_str_mv |
3518 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
23 |
dc.relation.ispartofjournal.none.fl_str_mv |
Sensors |
dc.relation.references.none.fl_str_mv |
Zhang, J.; Sheng, V.S.; Wu, J. Crowdsourced label aggregation using bilayer collaborative clustering. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3172–3185 Parvat, A.; Chavan, J.; Kadam, S.; Dev, S.; Pathak, V. A survey of deep-learning frameworks. In Proceedings of the 2017 International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017; pp. 1–7 Liu, Y.; Zhang, W.; Yu, Y. Truth inference with a deep clustering-based aggregation model. IEEE Access 2020, 8, 16662–16675 Gil-Gonzalez, J.; Orozco-Gutierrez, A.; Alvarez-Meza, A. Learning from multiple inconsistent and dependent annotators to support classification tasks. Neurocomputing 2021, 423, 236–247 Sung, H.E.; Chen, C.K.; Xiao, H.; Lin, S.D. A Classification Model for Diverse and Noisy Labelers. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2017; pp. 58–69 Yan, Y.; Rosales, R.; Fung, G.; Subramanian, R.; Dy, J. Learning from multiple annotators with varying expertise. Mach. Learn. 2014, 95, 291–327 Xu, G.; Ding, W.; Tang, J.; Yang, S.; Huang, G.Y.; Liu, Z. Learning effective embeddings from crowdsourced labels: An educational case study. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1922–1927 Tanno, R.; Saeedi, A.; Sankaranarayanan, S.; Alexander, D.C.; Silberman, N. Learning from noisy labels by regularized estimation of annotator confusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11244–11253 Davani, A.M.; Díaz, M.; Prabhakaran, V. Dealing with disagreements: Looking beyond the majority vote in subjective annotations. Trans. Assoc. Comput. Linguist. 2022, 10, 92–110 Kara, Y.E.; Genc, G.; Aran, O.; Akarun, L. Modeling annotator behaviors for crowd labeling. Neurocomputing 2015, 160, 141–156 Cao, P.; Xu, Y.; Kong, Y.; Wang, Y. Max-mig: An information theoretic approach for joint learning from crowds. arXiv 2019, arXiv:1905.13436 Chen, Z.; Wang, H.; Sun, H.; Chen, P.; Han, T.; Liu, X.; Yang, J. Structured Probabilistic End-to-End Learning from Crowds. In Proceedings of the IJCAI, Yokohama, Japan, 7–21 January 2021; pp. 1512–1518 Ruiz, P.; Morales-Álvarez, P.; Molina, R.; Katsaggelos, A.K. Learning from crowds with variational Gaussian processes. Pattern Recognit. 2019, 88, 298–311 G. Rodrigo, E.; Aledo, J.A.; Gámez, J.A. Machine learning from crowds: A systematic review of its applications. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1288 Zhang, P.; Obradovic, Z. Learning from inconsistent and unreliable annotators by a gaussian mixture model and bayesian information criterion. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Athens, Greece, 5–9 September 2011; pp. 553–568 Zhang, J. Knowledge learning with crowdsourcing: A brief review and systematic perspective. IEEE/CAA J. Autom. Sin. 2022, 9, 749–762 Zhu, T.; Pimentel, M.A.; Clifford, G.D.; Clifton, D.A. Unsupervised Bayesian inference to fuse biosignal sensory estimates for personalizing care. IEEE J. Biomed. Health Inform. 2018, 23, 47–58 Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.G. Learning from noisy labels with deep neural networks: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2022 Cheng, L.; Zhou, X.; Zhao, L.; Li, D.; Shang, H.; Zheng, Y.; Pan, P.; Xu, Y. Weakly supervised learning with side information for noisy labeled images. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXX 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 306–321 Lee, K.; Yun, S.; Lee, K.; Lee, H.; Li, B.; Shin, J. Robust inference via generative classifiers for handling noisy labels. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 3763–3772 Chen, P.; Liao, B.B.; Chen, G.; Zhang, S. Understanding and utilizing deep neural networks trained with noisy labels. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 1062–1070 Yu, X.; Han, B.; Yao, J.; Niu, G.; Tsang, I.; Sugiyama, M. How does disagreement help generalization against label corruption? In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 7164–7173 Lyu, X.; Wang, J.; Zeng, T.; Li, X.; Chen, J.; Wang, X.; Xu, Z. TSS-Net: Two-stage with sample selection and semi-supervised net for deep learning with noisy labels. In Proceedings of the Third International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI 2022), SPIE, Guangzhou, China, 12–14 August 2022; Volume 12509, pp. 575–584 Shen, Y.; Sanghavi, S. Learning with bad training data via iterative trimmed loss minimization. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 5739–5748 Ghosh, A.; Manwani, N.; Sastry, P. Making risk minimization tolerant to label noise. Neurocomputing 2015, 160, 93–107 Ghosh, A.; Kumar, H.; Sastry, P.S. Robust loss functions under label noise for deep neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31 Albarqouni, S.; Baur, C.; Achilles, F.; Belagiannis, V.; Demirci, S.; Navab, N. Aggnet: Deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1313–1321 Rodrigues, F.; Pereira, F. Deep learning from crowds. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32 Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605 Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847 Rizos, G.; Schuller, B.W. Average jane, where art thou?–recent avenues in efficient machine learning under subjectivity uncertainty. In Proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Lisbon, Portugal, 15–19 June 2020; pp. 42–55 Zhang, J.; Wu, X.; Sheng, V.S. Imbalanced multiple noisy labeling. IEEE Trans. Knowl. Data Eng. 2014, 27, 489–503 Dawid, A.P.; Skene, A.M. Maximum likelihood estimation of observer error-rates using the EM algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 20–28 Raykar, V.C.; Yu, S.; Zhao, L.H.; Valadez, G.H.; Florin, C.; Bogoni, L.; Moy, L. Learning from crowds. J. Mach. Learn. Res. 2010, 11, 1297–1322 Groot, P.; Birlutiu, A.; Heskes, T. Learning from multiple annotators with Gaussian processes. In Proceedings of the International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; pp. 159–164 Xiao, H.; Xiao, H.; Eckert, C. Learning from multiple observers with unknown expertise. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Gold Coast, Australia, 14–17 April 2013; pp. 595–606 Morales-Alvarez, P.; Ruiz, P.; Coughlin, S.; Molina, R.; Katsaggelos, A.K. Scalable variational Gaussian processes for crowdsourcing: Glitch detection in LIGO. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1534–1551 Gil-Gonzalez, J.; Alvarez-Meza, A.; Orozco-Gutierrez, A. Learning from multiple annotators using kernel alignment. Pattern Recognit. Lett. 2018, 116, 150–156 Morales-Álvarez, P.; Ruiz, P.; Santos-Rodríguez, R.; Molina, R.; Katsaggelos, A.K. Scalable and efficient learning from crowds with Gaussian processes. Inf. Fusion 2019, 52, 110–127 Rodrigues, F.; Pereira, F.; Ribeiro, B. Sequence labeling with multiple annotators. Mach. Learn. 2014, 95, 165–181 Wang, X.; Bi, J. Bi-convex optimization to learn classifiers from multiple biomedical annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 14, 564–575 Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 2018, 31, 1–11 Gil-González, J.; Valencia-Duque, A.; Álvarez-Meza, A.; Orozco-Gutiérrez, Á.; García-Moreno, A. Regularized chained deep neural network classifier for multiple annotators. Appl. Sci. 2021, 11, 5409 Zhao, X.; Li, X.; Bi, D.; Wang, H.; Xie, Y.; Alhudhaif, A.; Alenezi, F. L1-norm constraint kernel adaptive filtering framework for precise and robust indoor localization under the internet of things. Inf. Sci. 2022, 587, 206–225 Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–243 Saul, A.; Hensman, J.; Vehtari, A.; Lawrence, N. Chained Gaussian processes. In Proceedings of the Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 1431–1440 Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2019 Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747 Hernández-Muriel, J.A.; Bermeo-Ulloa, J.B.; Holguin-Londoño, M.; Álvarez-Meza, A.M.; Orozco-Gutiérrez, Á.A. Bearing health monitoring using relief-F-based feature relevance analysis and HMM. Appl. Sci. 2020, 10, 5170 LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 1989, 2, 396–404 Dogs vs. Cats—Kaggle.com. Available online: https://www.kaggle.com/c/dogs-vs-cats Peterson, J.C.; Battleday, R.M.; Griffiths, T.L.; Russakovsky, O. Human uncertainty makes classification more robust. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 9617–9626 Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556 Tzanetakis, G.; Cook, P. Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 2002, 10, 293–302 Rodrigues, F.; Pereira, F.; Ribeiro, B. Learning from multiple annotators: Distinguishing good from random labelers. Pattern Recognit. Lett. 2013, 34, 1428–1436 Gil-Gonzalez, J.; Giraldo, J.J.; Alvarez-Meza, A.; Orozco-Gutierrez, A.; Alvarez, M. Correlated Chained Gaussian Processes for Datasets with Multiple Annotators. IEEE Trans. Neural Netw. Learn. Syst. 2021 MacKay, D.J.; Mac Kay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003 Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30 Li, Z.L.; Zhang, G.W.; Yu, J.; Xu, L.Y. Dynamic Graph Structure Learning for Multivariate Time Series Forecasting. Pattern Recognit. 2023, 138, 109423 Leroux, L.; Castets, M.; Baron, C.; Escorihuela, M.J.; Bégué, A.; Seen, D.L. Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices. Eur. J. Agron. 2019, 108, 11–26 Montavon, G.; Binder, A.; Lapuschkin, S.; Samek, W.; Müller, K.R. Layer-wise relevance propagation: An overview. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer Nature: Cham, Switzerland, 2019; pp. 193–209 Holzinger, A.; Saranti, A.; Molnar, C.; Biecek, P.; Samek, W. Explainable AI methods-a brief overview. In Proceedings of the xxAI-Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, Vienna, Austria, 18 July 2020, Revised and Extended Papers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 13–38 Bennetot, A.; Donadello, I.; Qadi, A.E.; Dragoni, M.; Frossard, T.; Wagner, B.; Saranti, A.; Tulli, S.; Trocan, M.; Chatila, R.; et al. A practical tutorial on explainable ai techniques. arXiv 2021, arXiv:2111.14260 Saranti, A.; Hudec, M.; Mináriková, E.; Takáč, Z.; Großschedl, U.; Koch, C.; Pfeifer, B.; Angerschmid, A.; Holzinger, A. Actionable Explainable AI (AxAI): A Practical Example with Aggregation Functions for Adaptive Classification and Textual Explanations for Interpretable Machine Learning. Mach. Learn. Knowl. Extr. 2022, 4, 924–953 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.place.none.fl_str_mv |
Suiza |
dc.source.none.fl_str_mv |
https://www.mdpi.com/1424-8220/23/7/3518 |
institution |
Universidad de Ibagué |
bitstream.url.fl_str_mv |
https://repositorio.unibague.edu.co/bitstreams/343fa619-0539-4c57-ad8e-45ab38d3bf8a/download https://repositorio.unibague.edu.co/bitstreams/db8fae63-2707-43ba-b41c-7c59e777a8b6/download https://repositorio.unibague.edu.co/bitstreams/604c41f9-97e5-4e80-bb6d-a52afc68f8cf/download https://repositorio.unibague.edu.co/bitstreams/925d93de-99db-4081-91bc-33241a9da344/download |
bitstream.checksum.fl_str_mv |
d65ede29e237496c30d681f816e0d2b6 37ca98a6a0c60da572f0887e96c88d31 92b6934be8dcf1d603890d069bebb92c 2fa3e590786b9c0f3ceba1b9656b7ac3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Ibagué |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814204103319879680 |
spelling |
Triana-Martinez, Jenniffer Carolina407c69b2-46f4-42c4-a569-244690587cdb-1Gil-González, Juliand4dc3d5d-c43a-46c7-813c-26d2fb86299b-1Fernandez-Gallego, Jose A.5c39dc3b-5876-4b8c-bceb-1e5bce9dc255-1Lugo González, Carlos Andrésc7c7b0da-c06e-4b1f-8f28-9570765b26246002023-10-17T20:44:13Z2023-10-17T20:44:13Z2023-03-16Supervised learning requires the accurate labeling of instances, usually provided by an expert. Crowdsourcing platforms offer a practical and cost-effective alternative for large datasets when individual annotation is impractical. In addition, these platforms gather labels from multiple labelers. Still, traditional multiple-annotator methods must account for the varying levels of expertise and the noise introduced by unreliable outputs, resulting in decreased performance. In addition, they assume a homogeneous behavior of the labelers across the input feature space, and independence constraints are imposed on outputs. We propose a Generalized Cross-Entropy-based framework using Chained Deep Learning (GCECDL) to code each annotator’s non-stationary patterns regarding the input space while preserving the inter-dependencies among experts through a chained deep learning approach. Experimental results devoted to multiple-annotator classification tasks on several well-known datasets demonstrate that our GCECDL can achieve robust predictive properties, outperforming state-of-the-art algorithms by combining the power of deep learning with a noise-robust loss function to deal with noisy labels. Moreover, network self-regularization is achieved by estimating each labeler’s reliability within the chained approach. Lastly, visual inspection and relevance analysis experiments are conducted to reveal the non-stationary coding of our method. In a nutshell, GCEDL weights reliable labelers as a function of each input sample and achieves suitable discrimination performance with preserved interpretability regarding each annotator’s trustworthiness estimation.application/pdfTriana-Martinez, J.C.; Gil-Gonzalez, J.; Fernandez-Gallego, J.A.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G. Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification. Sensors 2023, 23, 3518. https:// doi.org/10.3390/s230735181424-8220https://hdl.handle.net/20.500.12313/3837engSuiza193518123SensorsZhang, J.; Sheng, V.S.; Wu, J. Crowdsourced label aggregation using bilayer collaborative clustering. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3172–3185Parvat, A.; Chavan, J.; Kadam, S.; Dev, S.; Pathak, V. A survey of deep-learning frameworks. In Proceedings of the 2017 International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017; pp. 1–7Liu, Y.; Zhang, W.; Yu, Y. Truth inference with a deep clustering-based aggregation model. IEEE Access 2020, 8, 16662–16675Gil-Gonzalez, J.; Orozco-Gutierrez, A.; Alvarez-Meza, A. Learning from multiple inconsistent and dependent annotators to support classification tasks. Neurocomputing 2021, 423, 236–247Sung, H.E.; Chen, C.K.; Xiao, H.; Lin, S.D. A Classification Model for Diverse and Noisy Labelers. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2017; pp. 58–69Yan, Y.; Rosales, R.; Fung, G.; Subramanian, R.; Dy, J. Learning from multiple annotators with varying expertise. Mach. Learn. 2014, 95, 291–327Xu, G.; Ding, W.; Tang, J.; Yang, S.; Huang, G.Y.; Liu, Z. Learning effective embeddings from crowdsourced labels: An educational case study. In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 8–11 April 2019; pp. 1922–1927Tanno, R.; Saeedi, A.; Sankaranarayanan, S.; Alexander, D.C.; Silberman, N. Learning from noisy labels by regularized estimation of annotator confusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11244–11253Davani, A.M.; Díaz, M.; Prabhakaran, V. Dealing with disagreements: Looking beyond the majority vote in subjective annotations. Trans. Assoc. Comput. Linguist. 2022, 10, 92–110Kara, Y.E.; Genc, G.; Aran, O.; Akarun, L. Modeling annotator behaviors for crowd labeling. Neurocomputing 2015, 160, 141–156Cao, P.; Xu, Y.; Kong, Y.; Wang, Y. Max-mig: An information theoretic approach for joint learning from crowds. arXiv 2019, arXiv:1905.13436Chen, Z.; Wang, H.; Sun, H.; Chen, P.; Han, T.; Liu, X.; Yang, J. Structured Probabilistic End-to-End Learning from Crowds. In Proceedings of the IJCAI, Yokohama, Japan, 7–21 January 2021; pp. 1512–1518Ruiz, P.; Morales-Álvarez, P.; Molina, R.; Katsaggelos, A.K. Learning from crowds with variational Gaussian processes. Pattern Recognit. 2019, 88, 298–311G. Rodrigo, E.; Aledo, J.A.; Gámez, J.A. Machine learning from crowds: A systematic review of its applications. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1288Zhang, P.; Obradovic, Z. Learning from inconsistent and unreliable annotators by a gaussian mixture model and bayesian information criterion. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Athens, Greece, 5–9 September 2011; pp. 553–568Zhang, J. Knowledge learning with crowdsourcing: A brief review and systematic perspective. IEEE/CAA J. Autom. Sin. 2022, 9, 749–762Zhu, T.; Pimentel, M.A.; Clifford, G.D.; Clifton, D.A. Unsupervised Bayesian inference to fuse biosignal sensory estimates for personalizing care. IEEE J. Biomed. Health Inform. 2018, 23, 47–58Song, H.; Kim, M.; Park, D.; Shin, Y.; Lee, J.G. Learning from noisy labels with deep neural networks: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2022Cheng, L.; Zhou, X.; Zhao, L.; Li, D.; Shang, H.; Zheng, Y.; Pan, P.; Xu, Y. Weakly supervised learning with side information for noisy labeled images. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXX 16; Springer: Berlin/Heidelberg, Germany, 2020; pp. 306–321Lee, K.; Yun, S.; Lee, K.; Lee, H.; Li, B.; Shin, J. Robust inference via generative classifiers for handling noisy labels. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 3763–3772Chen, P.; Liao, B.B.; Chen, G.; Zhang, S. Understanding and utilizing deep neural networks trained with noisy labels. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 1062–1070Yu, X.; Han, B.; Yao, J.; Niu, G.; Tsang, I.; Sugiyama, M. How does disagreement help generalization against label corruption? In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 7164–7173Lyu, X.; Wang, J.; Zeng, T.; Li, X.; Chen, J.; Wang, X.; Xu, Z. TSS-Net: Two-stage with sample selection and semi-supervised net for deep learning with noisy labels. In Proceedings of the Third International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI 2022), SPIE, Guangzhou, China, 12–14 August 2022; Volume 12509, pp. 575–584Shen, Y.; Sanghavi, S. Learning with bad training data via iterative trimmed loss minimization. In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 5739–5748Ghosh, A.; Manwani, N.; Sastry, P. Making risk minimization tolerant to label noise. Neurocomputing 2015, 160, 93–107Ghosh, A.; Kumar, H.; Sastry, P.S. Robust loss functions under label noise for deep neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31Albarqouni, S.; Baur, C.; Achilles, F.; Belagiannis, V.; Demirci, S.; Navab, N. Aggnet: Deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 2016, 35, 1313–1321Rodrigues, F.; Pereira, F. Deep learning from crowds. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847Rizos, G.; Schuller, B.W. Average jane, where art thou?–recent avenues in efficient machine learning under subjectivity uncertainty. In Proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Lisbon, Portugal, 15–19 June 2020; pp. 42–55Zhang, J.; Wu, X.; Sheng, V.S. Imbalanced multiple noisy labeling. IEEE Trans. Knowl. Data Eng. 2014, 27, 489–503Dawid, A.P.; Skene, A.M. Maximum likelihood estimation of observer error-rates using the EM algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 20–28Raykar, V.C.; Yu, S.; Zhao, L.H.; Valadez, G.H.; Florin, C.; Bogoni, L.; Moy, L. Learning from crowds. J. Mach. Learn. Res. 2010, 11, 1297–1322Groot, P.; Birlutiu, A.; Heskes, T. Learning from multiple annotators with Gaussian processes. In Proceedings of the International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; pp. 159–164Xiao, H.; Xiao, H.; Eckert, C. Learning from multiple observers with unknown expertise. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Gold Coast, Australia, 14–17 April 2013; pp. 595–606Morales-Alvarez, P.; Ruiz, P.; Coughlin, S.; Molina, R.; Katsaggelos, A.K. Scalable variational Gaussian processes for crowdsourcing: Glitch detection in LIGO. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1534–1551Gil-Gonzalez, J.; Alvarez-Meza, A.; Orozco-Gutierrez, A. Learning from multiple annotators using kernel alignment. Pattern Recognit. Lett. 2018, 116, 150–156Morales-Álvarez, P.; Ruiz, P.; Santos-Rodríguez, R.; Molina, R.; Katsaggelos, A.K. Scalable and efficient learning from crowds with Gaussian processes. Inf. Fusion 2019, 52, 110–127Rodrigues, F.; Pereira, F.; Ribeiro, B. Sequence labeling with multiple annotators. Mach. Learn. 2014, 95, 165–181Wang, X.; Bi, J. Bi-convex optimization to learn classifiers from multiple biomedical annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 14, 564–575Zhang, Z.; Sabuncu, M. Generalized cross entropy loss for training deep neural networks with noisy labels. Adv. Neural Inf. Process. Syst. 2018, 31, 1–11Gil-González, J.; Valencia-Duque, A.; Álvarez-Meza, A.; Orozco-Gutiérrez, Á.; García-Moreno, A. Regularized chained deep neural network classifier for multiple annotators. Appl. Sci. 2021, 11, 5409Zhao, X.; Li, X.; Bi, D.; Wang, H.; Xie, Y.; Alhudhaif, A.; Alenezi, F. L1-norm constraint kernel adaptive filtering framework for precise and robust indoor localization under the internet of things. Inf. Sci. 2022, 587, 206–225Box, G.E.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 26, 211–243Saul, A.; Hensman, J.; Vehtari, A.; Lawrence, N. Chained Gaussian processes. In Proceedings of the Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 1431–1440Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems; O’Reilly Media: Sebastopol, CA, USA, 2019Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017, arXiv:1708.07747Hernández-Muriel, J.A.; Bermeo-Ulloa, J.B.; Holguin-Londoño, M.; Álvarez-Meza, A.M.; Orozco-Gutiérrez, Á.A. Bearing health monitoring using relief-F-based feature relevance analysis and HMM. Appl. Sci. 2020, 10, 5170LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 1989, 2, 396–404Dogs vs. Cats—Kaggle.com. Available online: https://www.kaggle.com/c/dogs-vs-catsPeterson, J.C.; Battleday, R.M.; Griffiths, T.L.; Russakovsky, O. Human uncertainty makes classification more robust. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 9617–9626Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556Tzanetakis, G.; Cook, P. Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 2002, 10, 293–302Rodrigues, F.; Pereira, F.; Ribeiro, B. Learning from multiple annotators: Distinguishing good from random labelers. Pattern Recognit. Lett. 2013, 34, 1428–1436Gil-Gonzalez, J.; Giraldo, J.J.; Alvarez-Meza, A.; Orozco-Gutierrez, A.; Alvarez, M. Correlated Chained Gaussian Processes for Datasets with Multiple Annotators. IEEE Trans. Neural Netw. Learn. Syst. 2021MacKay, D.J.; Mac Kay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30Li, Z.L.; Zhang, G.W.; Yu, J.; Xu, L.Y. Dynamic Graph Structure Learning for Multivariate Time Series Forecasting. Pattern Recognit. 2023, 138, 109423Leroux, L.; Castets, M.; Baron, C.; Escorihuela, M.J.; Bégué, A.; Seen, D.L. Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices. Eur. J. Agron. 2019, 108, 11–26Montavon, G.; Binder, A.; Lapuschkin, S.; Samek, W.; Müller, K.R. Layer-wise relevance propagation: An overview. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer Nature: Cham, Switzerland, 2019; pp. 193–209Holzinger, A.; Saranti, A.; Molnar, C.; Biecek, P.; Samek, W. Explainable AI methods-a brief overview. In Proceedings of the xxAI-Beyond Explainable AI: International Workshop, Held in Conjunction with ICML 2020, Vienna, Austria, 18 July 2020, Revised and Extended Papers; Springer: Berlin/Heidelberg, Germany, 2022; pp. 13–38Bennetot, A.; Donadello, I.; Qadi, A.E.; Dragoni, M.; Frossard, T.; Wagner, B.; Saranti, A.; Tulli, S.; Trocan, M.; Chatila, R.; et al. A practical tutorial on explainable ai techniques. arXiv 2021, arXiv:2111.14260Saranti, A.; Hudec, M.; Mináriková, E.; Takáč, Z.; Großschedl, U.; Koch, C.; Pfeifer, B.; Angerschmid, A.; Holzinger, A. Actionable Explainable AI (AxAI): A Practical Example with Aggregation Functions for Adaptive Classification and Textual Explanations for Interpretable Machine Learning. Mach. Learn. Knowl. Extr. 2022, 4, 924–953This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/https://www.mdpi.com/1424-8220/23/7/3518Chained approachClassification; deep learningGeneralized cross-entropyMultiple annotatorsChained deep learning using generalized cross-entropy for multiple annotators classificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionPublicationTEXTChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdf.txtChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdf.txtExtracted texttext/plain4534https://repositorio.unibague.edu.co/bitstreams/343fa619-0539-4c57-ad8e-45ab38d3bf8a/downloadd65ede29e237496c30d681f816e0d2b6MD53THUMBNAILChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdf.jpgChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdf.jpgGenerated Thumbnailimage/jpeg12604https://repositorio.unibague.edu.co/bitstreams/db8fae63-2707-43ba-b41c-7c59e777a8b6/download37ca98a6a0c60da572f0887e96c88d31MD54ORIGINALChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdfChained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification - sensors-23-03518-v2.pdfapplication/pdf76349https://repositorio.unibague.edu.co/bitstreams/604c41f9-97e5-4e80-bb6d-a52afc68f8cf/download92b6934be8dcf1d603890d069bebb92cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8134https://repositorio.unibague.edu.co/bitstreams/925d93de-99db-4081-91bc-33241a9da344/download2fa3e590786b9c0f3ceba1b9656b7ac3MD5220.500.12313/3837oai:repositorio.unibague.edu.co:20.500.12313/38372023-10-18 03:00:34.624https://creativecommons.org/licenses/by-nc-nd/4.0/This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).https://repositorio.unibague.edu.coRepositorio Institucional Universidad de Ibaguébdigital@metabiblioteca.comQ3JlYXRpdmUgQ29tbW9ucyBBdHRyaWJ1dGlvbi1Ob25Db21tZXJjaWFsLU5vRGVyaXZhdGl2ZXMgNC4wIEludGVybmF0aW9uYWwgTGljZW5zZQ0KaHR0cHM6Ly9jcmVhdGl2ZWNvbW1vbnMub3JnL2xpY2Vuc2VzL2J5LW5jLW5kLzQuMC8= |